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To the memory of my father,
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PREFACE

The last two decades have witnessed an upsurge of interest and activity
in graph theory, particularly among applied mathematicians and engineers.
Clear evidence of this is to be found in an unprecedented growth in the
number of papers and books being published in the field. In 1957 there was
exactly one book on the subject (namely, Konig’s Théorie der Endlichen und
Unendlichen Graphen). Now, sixteen years later, there are over two dozen
textbooks on graph theory, and almost an equal number of proceedings of
various seminars and conferences.

Each book has its own strength and points of emphasis, depending on
the axe (or the pen) the author has to grind. I have emphasized the com-
putational and algorithmic aspects of graphs. This emphasis arises from the
experience and conviction that whenever graph theory is applied to solving
any practical problem (be it in electrical network analysis, in circuit layout,
in data structures, in operations research, or in social sciences), it almost
always leads to large graphs—graphs that are virtually impossible to analyze
without the aid of the computer. An engineer often finds that those real-life
problems that can be modeled into graphs small enough to be worked on by
hand are also small enough to be solved by means other than graph theory.
(In this respect graph theory is different from college algebra, elementary
calculus, or complex variables.) In fact, the high-speed digital computer is
one of the reasons for the recent growth of interest in graph theory.

Convinced that a student of applied graph theory must learn to enlist
the help of a digital computer for handling large graphs, I have emphasized
algorithms and their efficiencies. In proving theorems, constructive proofs
have been given preference over nonconstructive existence proofs. Chapter
11, the largest in the book, is devoted entirely to computational aspects of
graph theory, including graph-theoretic algorithms and samples of several
tested computer programs for solving problems on graphs. I believe this

XV



XVi PREFACE

approach has not been used in any of the earlier books on graph theory.
The material covered in Chapter 11 and in many sections from other chapters
is appearing for the first time in any textbook.

Yet the applied and algorithmic aspect of this book has not been allowed
to spoil the rigor and mathematical elegance of graph theory. Indeed, the
book contains enough material for a course in “pure” graph theory. The
book has been made as much self-contained as was possible.

The level of presentation is appropriate for advanced undergraduate and
first-year graduate students in all disciplines requiring graph theory. The
book is organized so that the first half (Chapters | through 9) serves as
essential and introductory material on graph theory. This portion requires
no special background, except some elementary concepts from set theory
and matrix algebra and, of course, a certain amount of mathematical matu-
rity. Although the illustrations of applications are interwoven with the theory
even in this portion, the examples selected are short and mostly of the nature
of puzzles and games. This is done so that a student in almost any field can
read and grasp the first half.

The second half of the book is more advanced, and different chapters
require different backgrounds as they deal with applications to nontrivial,
real-world, complex problems in different fields. Keeping this in mind,
Chapters 10 through 15 have been made independent of each other. One
could study a later chapter without going through the earlier ones, provided
the first nine chapters have been covered.

Since there is more material here than what can be covered in a one-
semester course, it 1s suggested that the contents be tailored to suit the
requirements of the students in different disciplines, for example:

Electrical Engineering: Chapters 1-9, and 11, 12, and 13.
Computer Science: Chapters 1-9, 11, 12, and parts of 10 and 15.
Operations Research: Chapters 1-9, and 11, 14, and parts of 15.
Applied Mathematics: Chapters 1-11 and parts of 15.
Introductory “pure” graph theory: Chapters 1-10.

s =

In fact, the book grew out of a number of such courses and lecture-series
given by the author at the Jet Propulsion Laboratory, California State
University at Los Angeles, the Indian Institute of Technology at Kanpur,
and the University of Illinois at Urbana-Champaign.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the help I have received from different
individuals and institutions. I am particularly indebted to Mr. David K.
Rubin, a dear friend and former colleague at the Jet Propulsion Laboratory;
Mr. Mateti Prabhaker, a former graduate student of mine at the Indian



PREFACE XVii
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] INTRODUCTION

1-1. WHAT IS A GRAPH?

A lineart graph (or simply a graph) G = (V, E) consists of a set of objects
V={v,, v,,...} called vertices, and another set E = {e,, e,, ...}, whose
elements are called edges, such that each edge e, is identified with an unorder-
ed pair (v, v,) of vertices. The vertices v,, v; associated with edge e, are called
the end vertices of e,. The most common representation of a graph is by means
of a diagram, in which the vertices are represented as points and each edge
as a line segment joining its end vertices. Often this diagram itself is referred to
as the graph. The object shown in Fig. 1-1, for instance, is a graph.

Observe that this definition permits an edge to be associated with a
vertex pair (v, v,). Such an edge having the same vertex as both its end ver-
tices is called a self-loop (or simply a loop. The word loop, however, has a
different meaning in electrical network theory; we shall therefore use the term
self-loop to avoid confusion). Edge ¢, in Fig. 1-1 is a self-loop. Also note that

€3

Fig. 1-1 Graph with five vertices and
U3 € Uy seven edges.

+The adjective “linear” is dropped as redundant in our discussions, because by a graph
we always mean a linear graph. There is no such thing as a nonlinear graph.

1



2 INTRODUCTION CHAP. 1

the definition allows more than one edge associated with a given pair of
vertices, for example, edges e, and e in Fig. 1-1. Such edges are referred to as
parallel edges.

A graph that has neither self-loops nor parallel edges is called a simple
graph. In some graph-theory literature, a graph is defined to be only a simple
graph, but in most engineering applications it is necessary that parallel edges
and self-loops be allowed; this is why our definition includes graphs with self-
loops and/or parallel edges. Some authors use the term general graph to
emphasize that parallel edges and self-loops are allowed.

It should also be noted that, in drawing a graph, it is immaterial whether
the lines are drawn straight or curved, long or short: what is important is the
incidence between the edges and vertices. For example, the two graphs drawn
in Figs. 1-2(a) and (b) are the same, because incidence between edges and
vertices is the same in both cases.

1

(a) (b)

Fig. 1-2 Same graph drawn differently.

In a diagram of a graph, sometimes two edges may seem to intersect at
a point that does not represent a vertex, for example, edges e and f in Fig.
1-3. Such edges should be thought of as being in different planes and thus
having no common point. (Some authors break one of the two edges at such
a crossing to emphasize this fact.)

Fig.1-3 Edgeseand f have nocommon
c point.
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A graph is also called a linear complex, a 1-complex, or a one-dimensional
complex. A vertex is also referred to as a node, a junction, a point, 0-cell, or an
0-simplex. Other terms used for an edge are a branch, a line, an element, a
I-cell an arc, and a I-simplex. In this book we shall generally use the terms
graph, vertex, and edge.

1-2. APPLICATIONS OF GRAPHS

Because of its inherent simplicity, graph theory has a very wide range of
applications in engineering, in physical, social, and biological sciences, in
linguistics, and in numerous other areas. A graph can be used to represent
almost any physical situation involving discrete objects and a relationship
among them. The following are four examples from among hundreds of such
applications.

Konigsberg Bridge Problem: The Konigsberg bridge problem is perhaps
the best-known example in graph theory. It was a long-standing problem
until solved by Leonhard Euler (1707-1783) in 1736, by means of a graph.
Euler wrote the first paper ever in graph theory and thus became the origina-
tor of the theory of graphs as well as of the rest of topology. The problem is
depicted in Fig. 1-4.

Two islands, C and D, formed by the Pregel River in Kdnigsberg (then
the capital of East Prussia but now renamed Kaliningrad and in West Soviet
Russia) were connected to each other and to the banks 4 and B with seven
bridges, as shown in Fig. 1-4. The problem was to start at any of the four land
areas of the city, A, B, C, or D, walk over each of the seven bridges exactly
once, and return to the starting point (without swimming across the river,
of course).

Euler represented this situation by means of a graph, as shown in Fig.
1-5. The vertices represent the land areas and the edges represent the bridges.

As we shall see in Chapter 2, Euler proved that a solution for this problem
does not exist.

Fig. 1-4 KoOnigsberg bridge problem.
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Fig. 1-5 Graph of Konigsberg bridge
B problem.

The Konigsberg bridge problem is the same as the problem of drawing
figures without lifting the pen from the paper and without retracing a line
(Problems 2-1 and 2-2). We all have been confronted with such problems at
one time or another.

Utilities Problem: There are three houses (Fig. 1-6) H,, H,, and H,, each
to be connected to each of the three utilitiess—water (W), gas (G), and elec-

H, A H, H,

X\

1
i
i

Fig. 1-6 Three-utilities problem.

tricity (E)—by means of conduits. Is it possible to make such connections
without any crossovers of the conduits?

Figure 1-7 shows how this problem can be represented by a graph—the
conduits are shown as edges while the houses and utility supply centers are
vertices. As we shall see in Chapter 5, the graph in Fig. 1-7 cannot be drawn
in the plane without edges crossing over. Thus the answer to the problem is
no.

Electrical Network Problems: Properties (such as transfer function and
input impedance) of an electrical network are functions of only two factors:

1. The nature and value of the elements forming the network, such as
resistors, inductors, transistors, and so forth.

2. The way these elements are connected together, that is, the topology
of the network.
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H, H,

Fig. 1-7 Graph of three-utilities problem.

Since there are only a few different types of electrical elements, the varia-
tions in networks are chiefly due to the variations in topology. Thus electrical
network analysis and synthesis are mainly the study of network topology. In
the topological study of electrical networks, factor 2 is separated from 1 and
1s studied independently. The advantage of this approach will be clearer in
Chapter 13, a chapter devoted solely to applying graph theory to electrical
networks.

The topology of a network is studied by means of its graph. In drawing
a graph of an electrical network the junctions are represented by vertices, and
branches (which consist of electrical elements) are represented by edges,
regardless of the nature and size of the electrical elements. An electrical net-
work and its graph are shown in Fig. 1-8.

e

Fig. 1-8 Electrical network and its graph.
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Seating Problem: Nine members of a new club meet each day for lunch
at a round table. They decide to sit such that every member has different
neighbors at each lunch. How many days can this arrangement last ?

This situation can be represented by a graph with nine vertices such that
each vertex represents a member, and an edge joining two vertices represents
the relationship of sitting next to each other. Figure 1-9 shows two possible

Fig. 19 Arrangements at a dinner
table.

seating arrangements—these are 1 23456789 | (solid lines), and 13527 4
9 6 8 1 (dashed lines). It can be shown by graph-theoretic considerations that
there are only two more arrangements possible. They are 1 57392846 1
and 179583624 1. In general it can be shown that for n people the number
of such possible arrangements is

n— 1 . .
7 if n1s odd,

and

n—2

> if n1s even.

The reader has probably noticed that three of the four examples of ap-
plications above are puzzles and not engineering problems. This was done
to avoid introducing at this stage background material not pertinent to graph
theory. More substantive applications will follow, particularly in the last
four chapters.

1-3. FINITE AND INFINITE GRAPHS

Although in our definition of a graph neither the vertex set ' nor the edge
set £ need be finite, in most of the theory and almost all applications these
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sets are finite. A graph with a finite number of vertices as well as a finite num-
ber of edges is called a finite graph, otherwise, it is an infinite graph. The
graphs in Figs. 1-1, 1-2, 1-5, 1-7, and 1-8 are all examples of finite graphs.
Portions of two infinite graphs are shown in Fig. 1-10.

Fig. 1-10 Portions of two infinite graphs.

In this book we shall confine ourselves to the study of finite graphs, and
unless otherwise stated the term “graph” will always mean a finite graph.

1-4. INCIDENCE AND DEGREE

When a vertex v, is an end vertex of some edge e;, v, and e; are said to be
incident with (on or to) each other. In Fig. 1-1, for example, edges e,, ¢4, and
e, are incident with vertex v,. Two nonparallel edges are said to be adjacent
if they are incident on a common vertex. For example, e, and e, in Fig. 1-1
are adjacent. Similarly, two vertices are said to be adjacent if they are the end
vertices of the same edge. In Fig. 1-1, v, and v, are adjacent, but v, and v, are
not.

The number of edges incident on a vertex v,, with self-loops counted twice,
is called the degree, d(v,), of vertex v, In Fig. 1-1, for example, d(v,) =

€7
Fig. 1-1 A graph with five vertices and
seven edges.
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d(v;) = d(v,) = 3, d(v,) = 4, and d(v,) = 1. The degree of a vertex is some-
times also referred to as its valency.
Let us now consider a graph G with e edges and n vertices v, v,, ..., v,.

Since each edge contributes two degrees, the sum of the degrees of all vertices
in G is twice the number of edges in G. That is,

§ d(v,) = 2e. (1-1)

Taking Fig. 1-1 as an example, once more,

d(v,) + d(,) + d(vs) + d(v,) + d(vs)
=3+4+ 3+ 3+ 1= 14 = twice the number of edges.

From Eq. (1-1) we shall derive the following interesting result.

THEOREM 1-1

The number of vertices of odd degree in a graph is always even.

Proof: 1f we consider the vertices with odd and even degrees separately, the
quantity in the left side of Eq. (1-1) can be expressed as the sum of two sums, each
taken over vertices of even and odd degrees, respectively, as follows:

T dw) = T d@) + T d(v). (1-2)

Since the left-hand side in Eq. (1-2) is even, and the first expression on the
right-hand side is even (being a sum of even numbers), the second expression must
also be even:

Y, d(v;) = an even number. (1-3)
odd

Because in Eq. (1-3) each d(v,) is odd, the total number of terms in the sum must
be even to make the sum an even number. Hence the theorem. [}

A graph in which all vertices are of equal degree is called a regular graph
(or simply a regular). The graph of three utilities shown in Fig. 1-7 is a regular
of degree three.

1-5. ISOLATED VERTEX, PENDANT VERTEX,
AND NULL GRAPH

A vertex having no incident edge is called an isolated vertex. In other
words, isolated vertices are vertices with zero degree. Vertices v, and v, in
Fig. 1-11, for example, are isolated vertices. A vertex of degree one is called
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o Uy

Ys

Fig. 1-11 Graph containing isolated vertices, series edges, and a
pendant vertex.

a pendant vertex or an end vertex. Vertex v, in Fig. 1-11 1s a pendant vertex.
Two adjacent edges are said to be in series if their common vertex is of degree
two. In Fig. 1-11, the two edges incident on v, are in series.

In the definition of a graph G = (V, E), it is possible for the edge set E to
be empty. Such a graph, without any edges, is called a null graph. In other
words, every vertex in a null graph is an isolated vertex. A null graph of six
vertices is shown in Fig. 1-12. Although the edge set £ may be empty, the

el

.UZ .U3 .U4 .US

L 193

Fig. 1-12 Null graph of six vertices.

vertex set } must not be empty; otherwise, there is no graph. In other words,
by definition, a graph must have at least one vertex.t

tSome authors (see, for example, [2-9], p. 1, or [15-58], p. 17) do allow the case in
which the vertex set V is also empty. This they call the null graph, and they call a graph
with E = ¢ and V # & a vertex graph. For our purposes this distinction is of no con-
sequence. For a lively discussion on paradoxes arising out of different definitions of the
null graph, see pp. 40-41 in Theory of Graphs: a Basis for Network Theory, by L. M.
Maxwell and M. B. Reed (Pergamon Press, N. Y. 1971).
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1-6. A BRIEF HISTORY OF GRAPH THEORY

As mentioned before, graph theory was born in 1736 with Euler’s paper
in which he solved the Konigsberg bridge problem [1-4].T For the next 100
years nothing more was done in the field.

In 1847, G. R. Kirchhoff (1824-1887) developed the theory of trees for
their applications in electrical networks [1-6]. Ten years later, A. Cayley
(1821-1895) discovered trees while he was trying to enumerate the isomers of
saturated hydrocarbons C H,, ., [I-3].

About the time of Kirchhoff and Cayley, two other milestones in graph
theory were laid. One was the four-color conjecture, which states that four
colors are sufficient for coloring any atlas (a map on a plane) such that the
countries with common boundaries have different colors.

It is believed that A. F. M&bius (1790-1868) first presented the four-color
problem in one of his lectures in 1840. About 10 years later, A. De Morgan
(1806-1871) discussed this problem with his fellow mathematicians in Lon-
don. De Morgan’s letter is the first authenticated reference to the four-color
problem. The problem became well known after Cayley published it in 1879
in the first volume of the Proceedings of the Royal Geographic Society. To this
day, the four-color conjecture is by far the most famous unsolved problem in
graph theory; it has stimulated an enormous amount of research in the field
[1-11].

The other milestone is due to Sir W. R. Hamilton (1805-1865). In the year
1859 he invented a puzzle and sold it for 25 guineas to a game manufacturer
in Dublin. The puzzle consisted of a wooden, regular dodecahedron (a poly-
hedron with 12 faces and 20 corners, each face being a regular pentagon and
three edges meeting at each corner; see Fig. 2-21). The corners were marked
with the names of 20 important cities: London, NewYork, Delhi, Paris, and
so on. The object in the puzzle was to find a route along the edges of the
dodecahedron, passing through each of the 20 cities exactly once [1-12].

Although the solution of this specific problem is easy to obtain (as we
shall see in Chapter 2), to date no one has found a necessary and sufficient
condition for the existence of such a route (called Hamiltonian circuit) in an
arbitrary graph.

This fertile period was followed by half a century of relative inactivity.
Then a resurgence of interest in graphs started during the 1920s. One of the
pioneers in this period was D. Konig. He organized the work of other mathe-
maticians and his own and wrote the first book on the subject, which was
published in 1936 [1-7].

The past 30 years has been a period of intense activity in graph theory—
both pure and applied. A great deal of research has been done and is being

tBracketed numbers refer to references at the end of chapters.
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done in this area. Thousands of papers have be¢n published and more than
a dozen books written during the past decade. Among the current leaders
in the field are Claude Berge, Oystein Ore (recently deceased), Paul Erdoés,
William Tutte, and Frank Harary.

SUMMARY

In this chapter some basic concepts of graph theory have been introduced,
and some elementary results have been obtained. An attempt has also been
made to show that graphs can be used to represent almost any problem
involving discrete arrangements of objects, where concern is not with the
internal properties of these objects but with the relationships among them.

REFERENCES

As an elementary text on graph theory, Ore’s book [1-10] is recommended. Busacker
and Saaty [1-2] is a good intermediate-level book. Seshu and Reed [1-13] is specially suited
for electrical engineers. Berge [1-1] and Ore [1-9] are good general texts, but are somewhat
advanced. Harary’s book [1-5] contains an excellent treatment of the subject. It is compact
and clear, but it contains no applications and is written for an advanced student of graph
theory. For relating graph theory to the rest of topology one should read [1-8], a well-
written elementary book on important aspects of topology. The entertaining book of
Rouse Ball [1-12] contains a variety of puzzles and games to which graphs have been applied.
1-1. BerGEk, C., The Theory of Graphs and Its Applications, John Wiley & Sons, Inc.,

New York, 1962. English translation of the original book in French: Théorie des
graphes et ses applications, Dunod Editeur, Paris, 1958.

1-2. Busacker, R. G., and T. L. SAATY, Finite Graphs and Networks: An Introduction
with Applications, McGraw-Hill Book Company, New York, 1965.

1-3. CaYLEY, A., “On the Theory of Analytical Forms Called Trees,” Phil. Mag., Vol.
13, 1857, 172-176.

1-4. EULER, L., “Solutio Problematis ad Geometriam Situs Pertinantis,” Academimae
Petropolitanae (St. Petersburg Academy), Vol. 8, 1736, 128-140. English translation
in Sci. Am., July 1953, 66-70.

1-5. HaRrAry, F., Graph Theory, Addison-Wesley Publishing Company, Inc., Reading,
Mass., 1969.

1-6. KircHHOFF, G., “Uber die Auflosung der Gleichungen, auf welche man bei der
Untersuchungen der Linearen Verteilung Galvanisher Strome gefihrt wird,”
Poggendorf Ann. Physik, Vol. 72, 1847, 497-508. English translation, /RE Trans.
Circuit Theory, Vol. CT-5, March 1958, 4-7.

1-7. KONIG, D., Theorie der endlichen und unendlichen Graphen, Leipzig, 1936; Chelsea,
New York, 1950.

1-8. LietzMaNN, W., Visual Topology, American Elsevier Publishing Company, Inc.,
New York, 1965. English translation of the German book Anschauliche Topologie,
R. Oldenbourg K. G., Munich, 1955.

1-9. ORrE, O., Theory of Graphs, American Mathematical Society, Providence, R.1., 1962.

1-10. ORrE, O., Graphs and Their Uses, Random House, Inc., New York, 1963.

1-11. OrE, O., The Four Color Problem, Academic Press, Inc., New York, 1967.



12

1-12.

1-13.

1-1.
1-2.

1-4.

1-5.

1-6.

1-7.

INTRODUCTION CHAP. |

Rouse BALL, W., Mathematical Recreations and Essays, London and New York,
1892; and The Macmillan Company, New York, 1962.

SESHU, S., and M. B. REeeD, Linear Graphs and Electrical Networks, Addison-Wesley
Publishing Company, Inc., Reading, Mass., 1961.

PROBLEMS

Draw all simple graphs of one, two, three, and four vertices.

Draw graphs representing problems of (a) two houses and three utilities; (b) four
houses and four utilities, say, water, gas, electricity, and telephone.

Name 10 situations (games, activities, real-life problems, etc.) that can be repre-
sented by means of graphs. Explain what the vertices and the edges denote.

Draw the graph of the Wheatstone bridge circuit.

Draw graphs of the following chemical compounds: (a) CHg, (b) C2Hs, (c) CsHs,
(d) N2Oj. (Hint: Represent atoms by vertices and chemical bonds between them by
edges.)

Draw a graph with 64 vertices representing the squares of a chessboard. Join these
vertices appropriately by edges, each representing a move of the knight. You will
see that in this graph every vertex is of degree two, three, four, six, or eight. How
many vertices are of each type?

Given a maze as shown in Fig. 1-13, represent this maze by means of a graph such
that a vertex denotes either a corridor or a dead end (as numbered). An edge repre-
sents a possible path between two vertices. (This is one of numerous mazes that
were drawn or built by the Hindus, Greeks, Romans, Vikings, Arabs, etc.)

3 |4
7
13 12{11
14
*
1 2 21 22 Destination 18 17 6 S
19120
15[16
10
9

Fig. 1-13 A maze.
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1-8.

1-10.

1-11.

1-12.

Decanting problem. You are given three vessels A, B, and C of capacities 8, 5,
and 3 gallons, respectively. A4 is filled, while B and C are empty. Divide the liquid
in A into two equal quantities. [Hint: Let a, b, and ¢ be the amounts of liquid in
A, B, and C, respectively. We have a -+ b + ¢ = 8 at all times. Since at least one
of the vessels is always empty or full, at least one of the following equations must
always be satisfied: a =0,a =8;b6=0,b=5; ¢c =0, ¢ = 3. You will fird that
with these constraints there are 16 possible states (situations) in this process.
Represent this problem by means of a 16-vertex graph. Each vertex stands for a
state and each edge for a permissible change of states between its two end vertices.
Now when you look at this graph it will be clear to you how to go from state (8, 0, 0)
to state (4, 4, 0).] This is the classical decanting problem.

Convince yourself that an infinite graph with a finite number of edges (i.e., a graph
with a finite number of edges and an infinite number of vertices) must have an
infinite number of isolated vertices.

Show that an infinite graph with a finite number of vertices (i.e., a graph with a
finite number of vertices and an infinite number of edges) will have at least one
pair of vertices (or one vertex in case of parallel self-loops) joined by an infinite
number of parallel edges.

Convince yourself that the maximum degree of any vertex in a simple graph with
n vertices isn — 1.

Show that the maximum number of edges in a simple graph with n vertices is
n(n — 1)/2.



2 PATHS AND CIRCUITS

This chapter serves two purposes. The first is to introduce additional
concepts and terms in graph theory. These concepts, such as paths, circuits,
and Euler graphs, deal mainly with the nature of connectivity in graphs. The
degree of vertices, which is a local property of each vertex, will be shown to
be related to the more global properties of the graph.

The second purpose is to illustrate with examples how to solve actual
problems using graph theory. The celebrated Konigsberg bridge problem,
which was introduced in Chapter 1, will be solved. The solution of the seating
arrangement problem, also introduced in Chapter 1, will be obtained by
means of Hamiltonian circuits. A third problem, which involves stacking
four multicolored cubes, will also be solved. These three unrelated problems
will demonstrate the problem-solving power of graph theory. The reader may
attempt to solve these problems without using graphs; the difficulty of such
an approach will quickly convince him of the value of graph theory.

2-1. ISOMORPHISM

In geometry two figures are thought of as equivalent (and called con-
gruent) if they have identical behavior in terms of geometric properties.
Likewise, two graphs are thought of as equivalent (and called isomorphic) if
they have identical behavior in terms of graph-theoretic properties. More
precisely: Two graphs G and G’ are said to be isomorphic (to each other) if
there is a one-to-one correspondence between their vertices and between
their edges such that the incidence relationship is preserved. In other words,
suppose that edge e is incident on vertices v, and v, in G; then the correspond-
ing edge e’ in G’ must be incident on the vertices ¢, and v, that correspond to

14
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€
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4 & 3

e e
2 e 6

v &U
1 e 2

(a) (b)

Fig. 2-1 Isomorphic graphs.

v, and v,, respectively. For example, one can verify that the two graphs in
Fig. 2-1 are isomorphic. The correspondence between the two graphs is as
follows: The vertices a, b, ¢, d, and e correspond to v,, v,, v,, v,, and vy,
respectively. The edges 1, 2, 3, 4, 5, and 6 correspond to e,, e,, €,, e,, €5, and
e, respectively.

Except for the labels (i.e., names) of their vertices and edges, isomorphic
graphs are the same graph, perhaps drawn differently. As indicated in Chap-
ter 1, a given graph can be drawn in many different ways. For example, Fig.
2-2 shows two different ways of drawing the same graph.

Fig. 2-2 Isomorphic graphs.

It is not always an easy task to determine whether or not two given graphs
are isomorphic. For instance, the three graphs shown in Fig. 2-3 are all
isomorphic, but just by looking at them you cannot tell that. It is left as an
exercise for the reader to show, by redrawing and labeling the vertices and
edges, that the three graphs in Fig. 2-3 are isomorphic (see Problem 2-3).

It is immediately apparent by the definition of isomorphism that two
isomorphic graphs must have

1. The same number of vertices.
2. The same number of edges.

3. An equal number of vertices with a given degree.
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(a) (b) (c)

Fig. 2-3 Isomorphic graphs.

(a) (b)

Fig. 2-4 Two graphs that are not isomorphic.

However, these conditions are by no means sufficient. For instance, the two
graphs shown in Fig. 2-4 satisfy all three conditions, yet they are not isomor-
phic. That the graphs in Figs. 2-4(a) and (b) are not isomorphic can be shown
as follows: If the graph in Fig. 2-4(a) were to be isomorphic to the one in (b),
vertex x must correspond to y, because there are no other vertices of degree
three. Now in (b) there is only one pendant vertex, w, adjacent to y, while in
(a) there are two pendant vertices, u and v, adjacent to x.

Finding a simple and efficient criterion for detection of isomorphism is
still actively pursued and is an important unsolved problem in graph theory.
In Chapter 11 we shall discuss various proposed algorithms and their pro-
grams for automatic detection of isomorphism by means of a computer.
For now, we move to a different topic.

2-2. SUBGRAPHS

A graph g is said to be a subgraph of a graph G if all the vertices and all
the edges of g are in G, and each edge of g has the same end vertices in g as
in G. For instance, the graph in Fig. 2-5(b) is a subgraph of the one in Fig.
2-5(a). (Obviously, when considering a subgraph, the original graph must
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(@) (b)

Fig. 2-5 Graph (a) and one of its subgraphs (b).

not be altered by identifying two distinct vertices, or by adding new edges or
vertices.) The concept of subgraph is akin to the concept of subset in set
theory. A subgraph can be thought of as being contained in (or a part of)
another graph. The symbol from set theory, g — G, is used in stating “g is
a subgraph of G.”

The following observations can be made immediately:

1. Every graph is its own subgraph.
2. A subgraph of a subgraph of G is a subgraph of G.
3. A single vertex in a graph G is a subgraph of G.

4. A single edge in G, together with its end vertices, is also a subgraph of
G.

Edge- Disjoint Subgraphs: Two (or more) subgraphs g, and g, of a graph G
are said to be edge disjoint if g, and g, do not have any edges in common.
For example, the two graphs in Figs. 2-7(a) and (b) are edge-disjoint sub-
graphs of the graph in Fig. 2-6. Note that although edge-disjoint graphs do
not have any edge in common, they may have vertices in common. Sub-
graphs that do not even have vertices in common are said to be vertex dis-
joint. (Obviously, graphs that have no vertices in common cannot possibly
have edges in common.)

2-3. A PUZZLE WITH MULTICOLORED CUBES

Now we shall take a brief pause to illustrate, with an example, how a
problem can be solved by using graphs. Two steps are involved here: First,
the physical problem is converted into a problem of graph theory. Second,



18 PATHS AND CIRCUITS CHAP. 2

the graph-theory problem is then solved. Let us consider the following prob-
lem, a well-known puzzle available in toy stores (under the name Instant
Insanity).

Problem: We are given four cubes. The six faces of every cube are various-
ly colored blue, green, red, or white. Is it possible to stack the cubes one on
top of another to form a column such that no color appears twice on any of
the four sides of this column? (Clearly, a trial-and-error method is unsatis-
factory, because we may have to try all 41,472 (= 3 X 24 X 24 X 24) poss-
ibilities.)

Solution: Step 1: Draw a graph with four vertices B, G, R, and W—one
for each color (Fig. 2-6). Pick a cube and call it cube 1; then represent its

Cube 3 G

G| B G | W

Cube 4 R

Fig. 2-6 Four cubes unfolded and the graph representing their
colors.

three pairs of opposite faces by three edges, drawn between the vertices with
appropriate colors. In other words, if a blue face in cube | has a white face
opposite to it, draw an edge between vertices B and W in the graph. Do the
same for the remaining two pairs of faces in cube 1. Put label | on all three
edges resulting from cube 1. A self-loop with the edge labeled | at vertex R,
for instance, would result if cube 1 had a pair of opposite faces both colored
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red. Repeat the procedure for the other three cubes one by one on the same
graph until we have a graph with four vertices and 12 edges. A particular set
of four colored cubes and their graph are shown in Fig. 2-6.

Step 2: Consider the graph resulting from this representation. The degree
of each vertex is the total number of faces with the corresponding color. For
the cubes of Fig. 2-6, we have five blue faces, six green, seven red, and six
white.

Consider two opposite vertical sides of the desired column of four cubes,
say facing north and south. A subgraph (with four edges) will represent these
eight faces—four facing south and four north. Each of the four edges in this
subgraph will have a different label—1, 2, 3, and 4. Moreover, no color occurs
twice on either the north side or south side of the column if and only if every
vertex in this subgraph is of degree two.

Exactly the same argument applies to the other two sides, east and west,
of the column.

Thus the four cubes can be arranged (to form a column such that no color
appears more than once on any side) if and only if there exist two edge-dis-
joint subgraphs, each with four edges, each of the edges labeled differently,
and such that each vertex is of degree two. For the set of cubes shown in Fig.
2-6, this condition is satisfied, and the two subgraphs are shown in Fig. 2-7.

3

(a) North-South Subgraph (b) East-West Subgraph

Fig. 2-7 Two edge-disjoint subgraphs of the graph in Fig. 2-6.

2-4. WALKS, PATHS, AND CIRCUITS

A walk 1s defined as a finite alternating sequence of vertices and edges,
beginning and ending with vertices, such that each edge is incident with the
vertices preceding and following it. No edge appears (is covered or traversed)
more than once in a walk. A vertex, however, may appear more than once.
In Fig. 2-8(a), for instance, v, av, b v, c v, dv, e v, fvs 1s a walk shown with
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(a) An Open Walk (b) A Path of Length Three

Fig. 2-8 A walk and a path.

heavy lines. A walk is also referred to as an edge train or a chain. The set of
vertices and edges constituting a given walk in a graph G is clearly a subgraph
of G.

Vertices with which a walk begins and ends are called its terminal vertices.
Vertices v, and v, are the terminal vertices of the walk shown in Fig. 2-8(a).
It is possible for a walk to begin and end at the same vertex. Such a walk is
called a closed walk. A walk that is not closed (i.e., the terminal vertices are
distinct) is called an open walk [Fig. 2-8(a)].

An open walk in which no vertex appears more than once is called a path
(or a simple path or an elementary path). In Fig. 2-8, v, av, bv,dv, is a path,
whereas v, a v, b v, ¢ v; d v, e v, f v5 is not a path. In other words,
a path does not intersect itself. The number of edges in a path is called the
length of a path. It immediately follows, then, that an edge which is not a self-
loop is a path of length one. It should also be noted that a self-loop can be
included in a walk but not in a path (Fig. 2-8).

The terminal vertices of a path are of degree one, and the rest of the ver-
tices (called intermediate vertices) are of degree two. This degree, of course,
is counted only with respect to the edges included in the path and not the
entire graph in which the path may be contained.

A closed walk i1n which no vertex (except the initial and the final vertex)
appears more than once is called a circuit. That is, a circuit is a closed, non-

"

Fig. 2-9 Three different circuits.
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intersecting walk. In Fig. 2-8(a), v, b v; d v, e v, is, for example, a circuit.
Three different circuits are shown in Fig. 2-9. Clearly, every vertex in a circuit
is of degree two; again, if the circuit is a subgraph of another graph, one must
count degrees contributed by the edges in the circuit only.

A circuit is also called a cycle, elementary cycle, circular path, and polygon.
In electrical engineering a circuit is sometimes referred to as a loop—not to
be confused with self-loop. (Every self-loop is a circuit, but not every circuit
is a self-loop.)

The definitions in this section are summarized in Fig. 2-10. The arrows
are in the direction of increasing restriction.

You may have observed that although the concepts of a path and a cir-
cuit are very simple, the formal definition becomes involved.

Subg\raﬁph Any collection of edges in G
of G
Walk A non-edge-retracing sequence
in G of edges of G
] 1 ;
A non-intersecting Path Circuit A non-intersecting
open walk in ¢ in G in G closed walk in G

Fig. 2-10 Walks, paths, and circuits as subgraphs.

2-5. CONNECTED GRAPHS, DISCONNECTED
GRAPHS, AND COMPONENTS

Intuitively, the concept of connect.'dness is obvious. A graph is connected
if we can reach any vertex from any other vertex by traveling along the edges.
More formally:

A graph G is said to be connected if there is at least one path between every
pair of vertices in G. Otherwise, G is disconnected. For instance, the graph in
Fig. 2-8(a) is connected, but the one in Fig. 2-11 is disconnected. A null
graph of more than one vertex is disconnected (Fig. 1-12).

It is easy to see that a disconnected graph consists of two or more con-
nected graphs. Each of these connected subgraphs is called a component. The
graph in Fig. 2-11 consists of two components. Another way of looking at a
component is as follows: Consider a vertex v, in a disconnected graph G. By
definition, not all vertices of G are joined by paths to v,. Vertex v, and all the
vertices of G that have paths to v, together with all the edges incident on
them, form a component. Obviously, a component itself is a graph.
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Fig. 2-11 A disconnected graph with
1 two components.

THEOREM 2-1

A graph G is disconnected if and only if its vertex set V can be partitioned into
two nonempty, disjoint subsets ¥, and ¥, such that there exists no edge in G
whose one end vertex is in subset V', and the other in subset V.

Proof: Suppose that such a partitioning exists. Consider two arbitrary vertices
a and b of G, such that a € V, and b € V,. No path can exist between vertices
a and b; otherwise, there would be at least one edge whose one end vertex would
be in V, and the other in V,. Hence, if a partition exists, G is not connected.

Conversely, let G be a disconnected graph. Consider a vertex a in G. Let V),
be the set of all vertices that are joined by paths to a. Since G is disconnected,
V, does not include all vertices of G. The remaining vertices will form a (nonempty)
set V,. No vertex in V/, is joined to any in V, by an edge. Hence the partition. N

Two interesting and useful results involving connectedness are:

THEOREM 2-2

If a graph (connected or disconnected) has exactiy two vertices of odd degree,
there must be a path joining these two vertices.

Proof: Let G be a graph with all even verticest except vertices v; and v,, which
are odd. From Theorem 1-1, which holds for every graph and therefore for every
component of a disconnected graph, no graph can have an odd number of odd
vertices. Therefore, in graph G, v, and v, must belong to the same component,
and hence must have a path between them. [

THEOREM 2-3
A simple graph (i.e., a graph without parallel edges or self-loops) with » vertices
and k& components can have at most (n — k)(n — k -4 1)/2 edges.

Proof: Let the number of vertices in each of the kK components of a graph G
be ny, n,, ..., ng. Thus we have

ny 4 np + o 4N =,

n[Z].

tFor brevity, a vertex with odd degree is called an odd vertex, and a vertex with even
degree an even vertex.
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The proof of the theorem depends on an algebraic inequalityT
k
>, nF < n? — (k — 1)2n — k). 2-1)
i=1

Now the maximum number of edges in the ith component of G (which is a simple
connected graph) is ln(n; — 1). (See Problem 1-12.) Therefore, the maximum
number of edges in G is

< %[n2 —(k —D@n— k)~ 2 from 2-1)
.= —;_—-(n —kKn—k+1. R (2-3)

It may be noted that Theorem 2-3 is a generalization of the result in Problem
1-12. The solution to Problem 1-12 is given by (2-3), where k = 1.

Now we are equipped to handle the Konigsberg bridge problem intro-
duced in Chapter 1.

2-6. EULER GRAPHS

As mentioned in Chapter 1, graph theory was born in 1736 with Euler’s
famous paper in which he solved the Konigsberg bridge problem. In the same
paper, Euler posed (and then solved) a more general problem: In what type
of graph G is it possible to find a closed walk running through every edge of
G exactly once ? Such a walk is now called an Euler line, and a graph that con-
sists of an Euler line is called an Euler graph. More formally:

If some closed walk in a graph contains all the edges of the graph, then the
walk 1s called an Euler line and the graph an Euler graph.

By its very definition a walk is always connected. Since the Euler line
(which is a walk) contains all the edges of the graph, an Euler graph is always
connected, except for any isolated vertices the graph may have. Since isolated
vertices do not contribute anything to the understanding of an Euler graph,
it is hereafter assumed that Euler graphs do not have any isolated vertices
and are therefore connected.

Now we shall state and prove an important theorem, which will enable us
to tell immediately whether or not a given graph is an Euler graph.

tProof: Y ., (mi — 1) = n — k. Squaring both sides,

k 2
(Z(ni — 1)) = n? + k? — 2nk
i-1

or 2%, (n? — 2n;) + k + nonnegative cross terms = n? + k2 — 2nk because (n; — 1) >0,
for all i. Therefore, D%, n? <n? + k2 —2nk —k +2n=n%—(k — D)2n — k). A
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THEOREM 2-4

A given connected graph G is an Euler graph if and only if all vertices of G are
of even degree.

Proof: Suppose that G is an Euler graph. It therefore contains an Euler line
(which is a closed walk). In tracing this walk we observe that every time the walk
meets a vertex v it goes through two “new” edges incident on v—with one we
“entered” v and with the other “exited.” This is true not only of all intermediate
vertices of the walk but also of the terminal vertex, because we “exited” and
“entered” the same vertex at the beginning and end of the walk, respectively. Thus
if G is an Euler graph, the degree of every vertex is even.

To prove the sufficiency of the condition, assume that all vertices of G are of
even degree. Now we construct a walk starting at an arbitrary vertex v and going
through the edges of G such that no edge is traced more than once. We continue
tracing as far as possible. Since every vertex is of even degree, we can exit from
every vertex we enter; the tracing cannot stop at any vertex but ». And since v is
also of even degree, we shall eventually reach v when the tracing comes to an end.
If this closed walk 4 we just traced includes all the edges of G, G is an Euler graph.
If not, we remove from G all the edges in /# and obtain a subgraph 4’ of G formed
by the remaining edges. Since both G and 4 have all their vertices of even degree,
the degrees of the vertices of 4" are also even. Moreover, A” must touch # at least
at one vertex a, because G is connected. Starting from a, we can again construct
a new walk in graph 4’. Since all the vertices of 4" are of even degree, this walk in
h’ must terminate at vertex a; but this walk in A’ can be combined with A to form
a new walk, which starts and ends at vertex v and has more edges than A. This
process can be repeated until we obtain a closed walk that traverses all the edges
of G. Thus G is an Euler graph.

Konigsberg Bridge Problem: Now looking at the graph of the Konigsberg
bridges (Fig. 1-5), we find that not all its vertices are of even degree. Hence,
it is not an Euler graph. Thus it is not possible to walk over each of the seven
bridges exactly once and return to the starting point.

One often encounters Euler lines in various puzzles. The problem common
to these puzzles is to find how a given picture can be drawn in one continuous
line without retracing and without lifting the pencil from the paper. Two such
pictures are shown in Fig. 2-12. The drawing in Fig. 2-12(a) is called Moham-
med’s scimitars and is believed to have come from the Arabs. The one in Fig.
2-12(b) is, of course, the star of David. (Equal time!)

In defining an Euler line some authors drop the requirement that the walk
be closed. Forexample,thewalkal c2d3ad4b5d6¢7 binFig. 2-13, which
includes all the edges of the graph and does not retrace any edge, is not closed.
The initial vertex is a and the final vertex is b. We shall call such an open
walk that includes (or traces or covers) all edges of a graph without retracing
any edge a unicursal line or an open Euler line. A (connected) graph that has
a unicursal line will be called a unicursal graph.
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e

(a) (b)

Fig. 2-12 Two Euler graphs.

2

d

Fig. 2-13 Unicursal graph.

[t is clear that by adding an edge between the initial and final vertices of
a unicursal line we shall get an Euler line. Thus a connected graph is unicursal
if and only if it has exactly two vertices of odd degree. This observation can
be generalized as follows:

THEOREM 2-5

In a connected graph G with exactly 2k odd vertices, there exist & edge-disjoint
subgraphs such that they together contain all edges of G and that each is a unicursal
graph.

Proof: Let the odd vertices of the given graph G be named vy, v, ..., v«;
Wi, Wa, ..., W, In any arbitrary order. Add k edges to G between the vertex pairs
vy, wy), (2, wa), ..., (v, wi) to form a new graph G'.

Since every vertex of G’ is of even degree, G’ consists of an Euler line p. Now
if we remove from p the k edges we just added (no two of these edges are incident
on the same vertex), p will be split into k walks, each of which is a unicursal line:
The first removal will leave a single unicursal line; the second removal will split
that into two unicursal lines; and each successive removal will split a unicursal
line into two unicursal lines, until there are & of them. Thus the theorem.
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We shall interrupt our study of Euler graphs to define some commonly
used graph-theoretic operations. One of these operations is required immedi-
ately in the next section; others will be needed later.

2-7. OPERATIONS ON GRAPHS

As is the case with most mathematical entities, 1t is convenient to consider
a large graph as a combination of small ones and to derive its properties
from those of the small ones. Since graphs are defined in terms of the sets of
vertices and edges, 1t is natural to employ the set-theoretical terminology to
define operations between graphs. In particular:

The union of two graphs G, = (V,, E,) and G, = (V,, E,) is another
graph G; (written as G; = G, U G,) whose vertex set V; = V, U V, and the
edge set E; = E, U E,. Likewise, the intersection G, N G, of graphs G, and
G, 1s a graph G, consisting only of those vertices and edges that are in both
G, and G,. The ring sum of two graphs G, and G, (written as G, @ G,) is a
graph consisting of the vertex set V', U V/, and of edges that are either in G,
or G,, but not in both. Two graphs and their union, intersection, and ring sum
are shown in Fig. 2-14.1

It is obvious from their definitions that the three operations just men-
tioned are commutative. That is,

G,UG,=G,UG,, G, NG,=G,NG,
GI@G2:G2®G1’

If G, and G, are edge disjoint, then G, N G, is a null graph, and G, D G, =
G, U G,. If G, and G, are vertex disjoint, then G, N G, is empty.
For any graph G,
GUG=GNG =G,
and
G ® G = a null graph.
If g is a subgraph of G, then G @ g is, by definition, that subgraph of G which
remains after all the edges in g have been removed from G. Therefore, G @ g
is written as G — g, whenever g = G. Because of this complementary nature,
G @ g = G — g is often called the complement of g in G.
Decomposition: A graph G is said to have been decomposed into two sub-
graphs g, and g, if
g U g, =0q,
and
g, N g, = a null graph.

tIf an edge e; is in two graphs G, and G, its end vertices in G; must have the same labels
as in Go.
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Yy

G, NG, G®0,
Fig. 2-14 Union, intersection, and ring sum of two graphs.

In other words, every edge of G occurs either in g, or in g,, but not in both.
Some of the vertices, however, may occur in both g, and g,. In decomposi-
tion, isolated vertices are disregarded. A graph containing m edges {e,, e,,

..,e,} can be decomposed in 2™~ ! — | different ways into pairs of sub-
graphs g,, g, (why?).

Although union, intersection, and ring sum have been defined for a pair
of graphs, these definitions can be extended in an obvious way to include any
finite number of graphs. Similarly, a graph G can be decomposed into more
than two subgraphs—subgraphs that are (pairwise) edge disjoint and col-
lectively include every edge in G.

Deletion: If v, is a vertex in graph G, then G — v, denotes a subgraph of
G obtained by deleting (i.e., removing) v, from G. Deletion of a vertex always
implies the deletion of all edges incident on that vertex. (See Fig. 2-15.) If e,
is an edge in G, then G — ¢, is a subgraph of G obtained by deleting e; from
G. Deletion of an edge does not imply deletion of its end vertices. Therefore
G—e;,=G0Hde,.
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G (G - Ui) (G - el)
Fig. 2-15 Vertex deletion and edge deletion.

Fusion: A pair of vertices a, b in a graph are said to be fused (merged or
identified) if the two vertices are replaced by a single new vertex such that every
edge that was incident on either a or b or on both is incident on the new ver-
tex. Thus fusion of two vertices does not alter the number of edges, but it
reduces the number of vertices by one. See Fig. 2-16 for an example.

Fig. 2-16 Fusion of vertices a and b.

These are some of the elementary operations on graphs. More complex
operations have been defined and are used in graph-theory literature. For a
survey of such operations see the paper by Harary and Wilcox [2-10].

2-8. MORE ON EULER GRAPHS

The following are some more results on the important topic of Euler
graphs.

THEOREM 2-6

A connected graph G is an Euler graph if and only if it can be decomposed
into circuits.

Proof: Suppose graph G can be decomposed into circuits; that is, G is a union
of edge-disjoint circuits. Since the degree of every vertex in a circuit is two, the
degree of every vertex in G is even. Hence G is an Euler graph.
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Conversely, let G be an Euler graph. Consider a vertex v,. There are at least
two edges incident at v,. Let one of these edges be between v, and »,. Since vertex
v, is also of even degree, it must have at least another edge, say between v, and
v3. Proceeding in this fashion, we eventually arrive at a vertex that has previously
been traversed, thus forming a circuit I'. Let us remove I' from G. All vertices in
the remaining graph (not necessarily connected) must also be of even degree. From
the remaining graph remove another circuit in exactly the same way as we removed
I" from G. Continue this process until no edges are left. Hence the theorem. [l

Arbitrarily Traceable Graphs: Consider the graph in Fig. 2-17, which is
an Euler graph. Suppose that we start from vertex a and trace the path a b c.

a b

Fig. 2-17 Arbitrarily traceable graph
d ¢ from c.

Now at ¢ we have the choice of going to a, d, or e. If we took the first choice,
we would only trace the circuit a b ¢ a, which is not an Euler line. Thus, start-
ing from a, we cannot trace the entire Euler line simply by moving along any
edge that has not already been traversed. This raises the following interesting
question:

What property must a vertex v in an Euler graph have such that an Euler
line is always obtained when one follows any walk from vertex v according to
the single rule that whenever one arrives at a vertex one shall select any edge
(which has not been previously traversed)?

Such a graph is called an arbitrarily traceable graph from vertex v. For
instance, the Euler graph in Fig. 2-17 is an arbitrarily traceable graph from
vertex ¢, but not from any other vertex. The Euler graph in Fig. 2-18 is not
arbitrarily traceable from any vertex; the graph in Fig. 2-19 is arbitrarily

Fig. 2-18 Euler graph; not arbitrarily
traceable.

Fig. 2-19 Arbitrarily traceable graph
from all vertices.
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traceable from all its vertices. The following interesting theorem, due to Ore
[2-5], answers the question just raised.

THEOREM 2-7

An Euler graph G is arbitrarily traceable from vertex v in G if and only if every
circuit in G contains v.

For a proof of the theorem the reader is referred to [2-5].

2-9. HAMILTONIAN PATHS AND CIRCUITS

An Euler line of a connected graph was characterized by the property of
being a closed walk that traverses every edge of the graph (exactly once). A
Hamiltonian circuit in a connected graph is defined as a closed walk that
traverses every vertex of G exactly once, except of course the starting vertex,
at which the walk also terminates. For example, in the graph of Fig. 2-20(a)

(a) (b)

Fig. 2-20 Hamiltonian circuits,

starting at vertex v, if one traverses along the edges shown in heavy lines—
passing through each vertex exactly once—one gets a Hamiltonian circuit.
A Hamiltonian circuit for the graph in Fig. 2-20(b) is also shown by heavy
lines. More formally:

A circuit in a connected graph G is said to be Hamiltonian if it includes
every vertex of G. Hence a Hamiltonian circuit in a graph of n vertices consists
of exactly » edges.

Obviously, not every connected graph has a Hamiltonian circuit. For
example, neither of the graphs shown in Figs. 2-17 and 2-18 has a Hamil-
tonian circuit. This raises the question: What is a necessary and sufficient
condition for a connected graph G to have a Hamiltonian circuit?
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Dodecahedron

D

(a) (b)

Fig. 2-21 Dodecahedron and its graph shown with a Hamiltonian
circuit,

This problem, first posed by the famous Irish mathematician Sir William
Rowan Hamilton in 1859, is still unsolved. As was mentioned in Chapter 1,
Hamilton made a regular dodecahedron of wood [see Fig. 2-21(a)], each of
whose 20 corners was marked with the name of a city. The puzzle was to
start from any city and find a route along the edge of the dodecahedron that
passes through every city exactly once and returns to the city of origin. The
graph of the dodecahedron is given in Fig. 2-21(b), and one of many such
routes (a Hamiltonian circuit) is shown by heavy lines.

The resemblance between the problem of an Euler line and that of a
Hamiltonian circuit is deceptive. The latter is infinitely more complex. Al-
though one can find Hamiltonian circuits in many specific graphs, such as
those shown in Figs. 2-20 and 2-21, there is no known criterion we can apply
to determine the existence of a Hamiltonian circuit in general. There are,
however, certain types of graphs that always contain Hamiltonian circuits,-
as will be presently shown.

Hamiltonian Path: If we remove any one edge from a Hamiltonian circuit,
we are left with a path. This path is called a Hamiltonian path. Clearly, a
Hamiltonian path in a graph G traverses every vertex of G. Since a Hamil-
tonian path is a subgraph of a Hamiltonian circuit (which in turn is a sub-
graph of another graph), every graph that has a Hamiltonian circuit also has
a Hamiltonian path. There are, however, many graphs with Hamiltonian
paths that have no Hamiltonian circuits (Problem 2-23). The length of a
Hamiltonian path (if it exists) in a connected graph of n vertices is n — 1.

In considering the existence of a Hamiltonian circuit (or path), we need
only consider simple graphs. This is because a Hamiltonian circuit (or path)
traverses every vertex exactly once. Hence it cannot include a self-loop or
a set of parallel edges. Thus a general graph may be made simple by removing
parallel edges and self-loops before looking for a Hamiltonian circuit in it.

It is left as an exercise for the reader to show that neither of the two graphs
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B @

(a) (b)

Fig. 2-22 Graphs without Hamiltonian circuits.

shown in Fig. 2-22 has a Hamiltonian circuit (or Hamiltonian path). See
Problem 2-24.

What general class of graphs is guaranteed to have a Hamiltonian circuit ?
Complete graphs of three or more vertices constitute one such class.

Complete Graph: A simple graph in which there exists an edge between
every pair of vertices is called a complete graph. Complete graphs of two,
three, four, and five vertices are shown in Fig. 2-23. A complete graph is

— A A KA

Fig. 2-23 Complete graphs of two, three, four, and five vertices.

sometimes also referred to as a universal graph or a clique. Since every vertex
is joined with every other vertex through one edge, the degree of every vertex
is n — | in a complete graph G of n vertices. Also the total number of edges
in G is n(n — 1)/2. See Problem 1-12.

It is easy to construct a Hamiltonian circuit in a complete graph of n
vertices. Let the vertices be numbered v,, v,,...,v,. Since an edge exists
between any two vertices, we can start from v, and traverse to v,, and v,, and
so on to v,, and finally from v, to v,. This is a Hamiltonian circuit.

Number of Hamiltonian Circuits in a Graph: A given graph may contain
more than one Hamiltonian circuit. Of interest are all the edge-disjoint
Hamiltonian circuits in a graph. The determination of the exact number of
edge-disjoint Hamiltonian circuits (or paths) in a graph in general is also an
unsolved problem. However, the number of edge-disjoint Hamiltonian cir-
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cuits in a complete graph with odd number of vertices is given by Theorem
2-8.

THEOREM 2-8

In a complete graph with n vertices there are (n — 1)/2 edge-disjoint Hamil-
tonian circuits, if # is an odd number > 3.

Proof: A complete graph G of n vertices has n(n — 1)/2 edges, and a Hamil-
tonian circuit in G consists of n edges. Therefore, the number of edge-disjoint
Hamiltonian circuits in G cannot exceed (n — 1)/2. That there are (n — 1)/2 edge-
disjoint Hamiltonian circuits, when » is odd, can be shown as follows:

The subgraph (of a complete graph of n vertices) in Fig. 2-24 is a Hamiltonian
circuit. Keeping the vertices fixed on a circle, rotate the polygonal pattern clockwise

r9
[ ]
3

|
I
4 : n—1
|
Fig. 2-24 Hamiltonian circuit; n is
n—3 odd.

by 360/(n — 1),2-360/(n — 1),3-360/(n — 1), ..., (n — 3)/2-360/(n — 1) degrees.
Observe that each rotation produces a Hamiltonian circuit that has no edge in
common with any of the previous ones. Thus we have (n — 3)/2 new Hamiltonian
circuits, all edge disjoint from the one in Fig. 2-24 and also edge disjoint among
themselves. Hence the theorem. |

This theorem enables us to solve the problem of the seating arrangement
at a round table, introduced in Chapter 1, as follows:

Representing a member x by a vertex and the possibility of his sitting next
to another member y by an edge between x and y, we construct a graph G.
Since every member is allowed to sit next to any other member, G is a com-
plete graph of nine vertices—nine being the number of people to be seated
around the table. Every seating arrangement around the table is clearly a
Hamiltonian circuit.

The first day of their meeting they can sit in any order, and it will be a
Hamiltonian circuit H,. The second day, if they are to sit such that every mem-
ber must have different neighbors, we have to find another Hamiltonian cir-
cuit H, in G, with an entirely different set of edges from those in H,; that is,
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H, and H, are edge-disjoint Hamiltonian circuits. From Theorem 2-8 the
number of edge-disjoint Hamiltonian circuits in G is four; therefore, only
four such arrangements exist among nine people.

Another interesting result on the question of existence of Hamiltonian
circuits in a graph, obtained by G. A. Dirac, is:

THEOREM 2-9

A sufficient (but by no means necessary) condition for a simple graph G to
have a Hamiltonian circuit is that the degree of every vertex in G be at least »/2,
where # is the number of vertices in G.

Proof: For proof the reader is referred to the original paper by Dirac [2-3].

2-10. TRAVELING-SALESMAN PROBLEM

A problem closely related to the question of Hamiltonian circuits is the
traveling-salesman problem, stated as follows: A salesman is required to visit
a number of cities during a trip. Given the distances between the cities, in
what order should he travel so as to visit every city precisely once and return
home, with the minimum mileage traveled ?

Representing the cities by vertices and the roads between them by edges,
we get a graph. In this graph, with every edge e, there is associated a real
number (the distance in miles, say), w(e;). Such a graph is called a weighted
graph; w(e;) being the weight of edge e,.

In our problem, if each of the cities has a road to every other city, we have
a complete weighted graph. This graph has numerous Hamiltonian circuits,
and we are to pick the one that has the smallest sum of distances (or weights).

The total number of different (not edge disjoint, of course) Hamiltonian
circuits in a complete graph of n vertices can be shown to be (n — 1)!/2. This
follows from the fact that starting from any vertex we have n — 1 edges to
choose from the first vertex, n — 2 from the second, » — 3 from the third,
and so on. These being independent choices, we get (n — 1) ! possible number
of choices. This number is, however, divided by 2, because each Hamil-
tonian circuit has been counted twice.

Theoretically, the problem of the traveling salesman can always be solved
by enumerating all (n — 1)!/2 Hamiltonian circuits, calculating the distance
traveled in each, and then picking the shortest one. However, for a large
value of n, the labor involved is too great even for a digital computer (try
solving it for the 50 state capitals in the United States; n = 50).

The problem is to prescribe a manageable algorithm for finding the short-
est route. No efficient algorithm for problems of arbitrary size has yet been
found, although many attempts have been made. Since this problem has
applications in operations research, some specific large-scale examples have
been worked out (see [2-1]). There are also available several heuristic methods
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of solution that give a route very close to the shortest one, but do not guar-
antee the shortest (see [2-4] for such a method).

SUMMARY

In this chapter we discussed the subgraph—a graph that is part of another
graph. Walks, paths, circuits, Euler lines, Hamiltonian paths, and Hamil-
tonian circuits in a graph G are its subgraphs with special properties. A given
graph G can be characterized and studied in terms of the presence or absence
of these subgraphs. Many physical problems can be represented by graphs
and solved by observing the relevant properties of the corresponding graphs.

Various types of walks discussed in this chapter are summarized in Fig.
2-25. The arrows point in the direction of increasing restriction.

Walk
Open Closed
walk walk
Path Um_cursal [Circuit Ep]er
line ! line
Hamiltonian Hamiltonian Arbitrarily
path circuit traceable

Fig. 2-25 Different types of walks.
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PROBLEMS

Verify that the two graphs in Fig. 2-2 are isomorphic. Label the corresponding
vertices and edges.

Show by redrawing, step by step, that graphs (b) and (c) in Fig. 2-3 are isomorphic
to (a).
Show that the two graphs in Figs. 2-26(a) and (b) are isomorphic.

(a) (b)

Fig. 2-26
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2-4.

2-5.

2-6.

2-8.

2-9.

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

Construct three more examples to show that conditions 1, 2, and 3 in Section 2-1
are not sufficient for isomorphism between graphs.

Prove that any two simple connected graphs with n vertices, all of degree two, are
isomorphic.

Are the two graphs in Fig. 2-27 isomorphic? Why?

Fig. 2-27

Given the set of cubes represented by the graph in Fig. 2-6, is it possible to stack
all four cubes into a column such that each side shows only one color? Explain.

Prove that a simple graph with n vertices must be connected if it has more than
[(n — 1)(n — 2))/2 edges. (Hint: Use Theorem 2-3.)

Prove that if a connected graph G is decomposed into two subgraphs g; and g»,
there must be at least one vertex common between g; and g».

Prove that a connected graph G remains connected after removing an edge e; from
G, if and only if e; is in some circuit in G.

Draw a connected graph that becomes disconnected when any edge is removed
from it.

Prove that a graph with n vertices satisfying the condition of Problem 2-11 is (a)
simple, and (b) has exactly n — 1 edges.

What is the length of the path from the entrance to the center of the maze in
Problem 1-7?

List all the different paths between vertices 5 and 6 in Fig. 2-5(a). Give the length
of each of these paths.

Group the paths listed in Problem 2-14 into sets of edge-disjoint paths. Demon-
strate that the union of two edge-disjoint paths between a pair of vertices forms a
circuit.

In a graph G let p; and p2 be two different paths between two given vertices. Prove
that p; @ p» is a circuit or a set of circuits in G.

Let a, b, and ¢ be three distinct vertices in a graph. There is a path between a and
b and also there is a path between b and c. Prove that there is a path between a and c.
If the intersection of two paths is a disconnected graph, show that the union of the
two paths has at least one circuit.

You are given a 10-piece domino set whose titles have the following set of dots:
(1,2); (1,3); (1,4); (1,5); (2,3); (2,4); (2,5); (3,4); (3,95); (4, 5). Discuss the
possibility of arranging the tiles in a connected series such that one number on a
title always touches the same number on its neighbor. (Hint: Use a five-vertex
complete graph and see if it is an Euler graph.)

Is it possible to move a knight on a chessboard such that it completes every per-
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missible move exactly once? A move between two squares is counted as one regard-
less of the direction in which it is made. (Hint: Is the graph of Problem 1-6 uni-
cursal?)

A round-robin tournament (when every player plays against every other) among
n players (n being an even number) can be represented by a complete graph of »
vertices. Discuss how you would schedule the tournaments to finish in the shortest
possible time.

Observe that there can be no path longer than a Hamiltonian path (if it exists) in
a graph.
Draw a graph that has a Hamiltonian path but does not have a Hamiltonian circuit.

Show that neither of the graphs in Fig. 2-22 has a Hamiltonian path (and therefore
no Hamiltonian circuit). [Hint: For Fig. 2-22(a), of all the edges incident at a vertex
only two can be included in a Hamiltonian circuit. Count the number of edges
that have to be excluded. You will find that 13 edges must be excluded from Fig.
2-22(a). The number of remaining edges is insufficient to form a Hamiltonian circuit.
For Fig. 2-22(b), first consider all vertices of degree two.]

Show that the graph of a rhombic dodecahedron (with eight vertices of degree
three and six vertices of degree four) has no Hamiltonian path (and therefore no
Hamiltonian circuit).

Draw a graph in which an Euler line is also a Hamiltonian circuit. What can you
say about such graphs in general ?

Is it possible, starting from any of the 64 squares of the chessboard, to move a
knight such that it occupies every square exactly once and returns to the initial
position? If so, give one such tour. (Hint: Look for a Hamiltonian circuit in the
graph of Problem 1-6.)

Prove that a graph G with n vertices always has a Hamiltonian path if the sum of
the degrees of every pair of vertices v;, v; in G satisfies the condition

dw) +dw)=n— 1.
(Hint: First show that G is connected. Then use induction on path length in G.)

Using the result of Problem 2-28, show that in a dancing ring of » children it is
always possible to arrange the children so that everyone has a friend at each side if
every child enjoys friendship with at least half the children.
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The second part of the chapter introduces the spanning tree—another
important notion in the theory of graphs. The relationships among circuits,
trees, and so on, in a graph are explored. Unavoidably, as with Chapters 1
and 2, this chapter also has a large number of definitions. In studying any new
branch of mathematics, there is no way to avoid new terms and definitions.
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3-1. TREES

A tree i1s a connected graph without any circuits. The graph in Fig. 3-1,
for instance, is a tree. Trees with one, two, three, and four vertices are shown
in Fig. 3-2. As pointed out in Chapter 1, a graph must have at least one vertex,
and therefore so must a tree. Some authors allow the null tree, a tree without
any vertices. We have excluded such an entity from being a tree. Similarly,
as we are considering only finite graphs, our trees are also finite.

It follows immediately from the definition that a tree has to be a simple
graph, that is, having neither a self-loop nor parallel edges (because they both
form circuits).

Trees appear in numerous instances. The genealogy of a family is often

39




Laung Da Lashkara - www.Songs.PK

Mahalaxmi Iyer, Hard Kaur & Jassi

Patiala House, track 1

2011

Bollywood Music

306.5429

eng - 
www.Songs.PK


40 TREES AND FUNDAMENTAL CIRCUITS CHAP. 3

Fig. 3-1 Tree.

VARV

Fig. 3-2 Trees with one, two, three, and four vertices.

N

Fig. 3-3 Decision tree.
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represented by means of a tree (in fact the term tree comes from family tree).
A river with its tributaries and subtributaries can be represented by a tree.
The sorting of mail according to zip code and the sorting of punched cards
are done according to a tree (called decision tree or sorting tree).

Figure 3-3 might represent the flow of mail. All the mail arrives at some
local office, vertex N. The most significant digit in the zip code is read at N,
and the mail is divided into 10 piles N,, N,, ..., No, and N,, depending on
the most significant digit. Each pile is further divided into 10 piles according
to the second most significant digit, and so on, till the mail is subdivided into
10° possible piles, each representing a unique five-digit zip code.

In many sorting problems we have only two alternatives (instead of 10 as
in the preceding example) at each intermediate vertex, representing a dicho-
tomy, such as large or small, good or bad, O or 1. Such a decision tree with
two choices at each vertex occurs frequently in computer programming and
switching theory. We shall deal with such trees and their applications in Sec-
tion 3-5. Let us first obtain a few simple but important theorems on the gene-
ral properties of trees.

3-2. SOME PROPERTIES OF TREES

THEOREM 3-1

There is one and only one path between every pair of vertices in a tree, 7.

Proof: Since T is a connected graph, there must exist at least one path between
every pair of vertices in 7. Now suppose that between two vertices a and b of T
there are two distinct paths. The union of these two paths will contain a circuit
and T cannot be a tree. W

Conversely:

THEOREM 3-2
If in a graph G there is one and only one path between every pair of vertices,
G is a tree.

Proof: Existence of a path between every pair of vertices assures that G is
connected. A circuit in a graph (with two or more vertices) implies that there is
at least one pair of vertices a, b such that there are two distinct paths between a
and b. Since G has one and only one path between every pair of vertices, G can
have no circuit. Therefore, G is a tree. B

THEOREM 3-3

A tree with n vertices has » — 1 edges.

Proof: The theorem will be proved by induction on the number of vertices.
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€

T

Fig. 3-4 Tree T with n vertices.

It is easy to see that the theorem is true for n = 1, 2, and 3 (see Fig. 3-2). Assume
that the theorem holds for all trees with fewer than n vertices.

Let us now consider a tree T with »n vertices. In T let e, be an edge with end
vertices v; and v;. According to Theorem 3-1, there is no other path between v;
and v; except e,. Therefore, deletion of e, from T will disconnect the graph, as
shown in Fig. 3-4. Furthermore, T — e, consists of exactly two components, and
since there were no circuits in 7 to begin with, each of these components is a tree.
Both these trees, ¢, and #,, have fewer than n vertices each, and therefore, by the
induction hypothesis, each contains one less edge than the number of vertices in it.
Thus T — e, consists of n — 2 edges (and » vertices). Hence T has exactly n — 1

edges. B

THEOREM 3-4

Any connected graph with n vertices and » — 1 edges is a tree.

Proof: The proof of the theorem is left to the reader as an exercise (Problem
3-5).

You may have noticed another important feature of a tree: its vertices
are connected together with the minimum number of edges. A connected
graph is said to be minimally connected if removal of any one edge from it
disconnects the graph. A minimally connected graph cannot have a circuit;
otherwise, we could remove one of the edges in the circuit and still leave the
graph connected. Thus a minimally connected graph is a tree. Conversely, if
a connected graph G is not minimally connected, there must exist an edge
e; iIn G such that G — e, is connected. Therefore, e, is in some circuit, which
implies that G is not a tree. Hence the following theorem:

THEOREM 3-5

A graph is a tree if and only if it is minimally connected.

The significance of Theorem 3-5 is obvious. Intuitively, one can see that
to interconnect n distinct points, the minimum number of line segments
needed is n — 1. It requires no background in electrical engineering to realize



SEC. 3-3 PENDANT VERTICES IN A TREE 43

g, & Fig.3-5 EdgeeaddedtoG =g U g2.

that to short (electrically) n pins together, one needs at least n — 1 pieces of
wire. The resulting structure, according to Theorem 3-5, is a tree.

We showed that a connected graph with n vertices and without any cir-
cuits has n — 1 edges. We can also show that a graph with n vertices which
has no circuit and has n — 1 edges is always connected (i.e., it is a tree), in
the following theorem.

THEOREM 3-6

A graph G with n vertices, n — 1 edges, and no circuits is connected.

Proof: Suppose there exists a circuitless graph G with »n vertices and n — 1 edges
which is disconnected. In that case G will consist of two or more circuitless com-
ponents. Without loss of generality, let G consist of two components, g, and g,.
Add an edge e between a vertex v, in g; and v, in g, (Fig. 3-5). Since there was no
path between v, and v, in G, adding e did not create a cCircuit. Thus G U e is a cir-
cuitless, connected graph (i.e., a tree) of n vertices and » edges, which is not possible,
because of Theorem 3-3.

The results of the preceding six theorems can be summarized by saying
that the following are five different but equivalent definitions of a tree. That is,
a graph G with n vertices is called a tree if

. G 1s connected and is circuitless, or

. G is connected and has n — 1 edges, or

1

2

3. G is circuitless and has n — 1 edges, or

4. There is exactly one path between every pair of vertices in G, or
5

. G 1s a minimally connected graph.

3-3. PENDANT VERTICES IN A TREE

You must have observed that each of the trees shown in the figures has
several pendant vertices (a pendant vertex was defined as a vertex of degree
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Fig. 3-6 Tree of the monotonically increasing sequences in 4, 1,
13,7,0, 2, 8, 11, 3.

one). The reason is that in a tree of n vertices we have n — 1 edges, and hence
2(n — 1) degrees to be divided among n vertices. Since no vertex can be of
zero degree, we must have at least two vertices of degree one in a tree. This
of course makes sense only if n > 2. More formally:

THEOREM 3-7

In any tree (with two or more vertices), there are at least two pendant vertices.

An Application: The following problem is used in teaching computer
programming. Given a sequence of integers, no two of which are the same,
find the largest monotonically increasing subsequence in it. Suppose that the
sequence giventousis 4, 1,13,7,0, 2, 8, 11, 3; it can be represented by a tree
in which the vertices (except the start vertex) represent individual numbers
in the sequence, and the path from the start vertex to a particular vertex v
describes the monotonically increasing subsequence terminating in v. As
shown in Fig. 3-6, this sequence contains four longest monotonically increas-
ing subsequences, that is, (4, 7, 8, 11), (1,7, 8, 11), (1, 2, 8, 11), and (0, 2, 8,
11). Each is of length four. Such a tree used in representing data is referred
to as a data tree by computer programmers.
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3-4. DISTANCE AND CENTERS IN A TREE

The tree in Fig. 3-7 has four vertices. Intuitively, it seems that vertex b is
located more “centrally” than any of the other three vertices. We shall ex-

¢ Fig.3-7 Tree.

plore this idea further and see 1t 1n a tree there exists a “center” (or centers).
Inherent in the concept of a center is the idea of “distance,” so we must define
distance before we can talk of a center.

In a connected graph G, the distance d(v,, v;) between two of its vertices
v, and v, is the length of the shortest path (i.e., the number of edges in the
shortest path) between them.

The definition of distance between any two vertices is valid for any con-
nected graph (not necessarily a tree). In a graph that is not a tree, there are
generally several paths between a pair of vertices. We have to enumerate all
these paths and find the length of the shortest one. (There may be several
shortest paths.)

For instance, some of the paths between vertices v, and v, in Fig. 3-8 are
(a,e), (a,c,[), (b,c,e), (b f) (b, g h),and (b, g, i, k). There are two shortest
paths, (a, e) and (b, f), each of length two. Hence d(v,, v,) = 2.

In a tree, since there is exactly one path between any two vertices (Theorem
3-1), the determination of distance is much easier. For instance, in the tree of
Fig. 3-7, d(a, b) = 1, d(a, ¢) = 2, d(c, b) = 1, and so on.

A Metric: Before we can legitimately call a function f(x, y) of two vari-
ables a “distance” between them, this function must satisfy certain require-
ments. These are

Fig. 3-8 Distance between v; and v, is two.
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1. Nonnegativity: f(x, y) > 0, and f(x, y) = Oifand only if x = y.

2. Symmetry: f(x, y) = f(y, x).
3. Triangle inequality: f(x, y) < f(x, z) + f(z, y) for any z.

A function that satisfies these three conditions is called a metric. That the
distance d(v,, v;) between two vertices of a connected graph satisfies condi-
tions 1 and 2 is immediately evident. Since d(v,, v)) is the length of the short-
est path between vertices v, and v;, this path cannot be longer than another
path between v, and v;, which goes through a specified vertex v,. Hence d(v,,
v;) < d(v,, v,) + d(v,, v;). Therefore,

THEOREM 3-8

The distance between vertices of a connected graph is a metric.

Coming back to our original topic of relative location of different vertices
in a tree, let us define another term called eccentricity (also referred to as
associated number or separation) of a vertex in a graph.

The eccentricity E(v) of a vertex v in a graph G is the distance from v to
the vertex farthest from v in G; that is,

E(v) = max d(v, v,).
vi€G

A vertex with minimum eccentricity in graph G is called a center of G. The
eccentricities of the four vertices in Fig. 3-7 are E(a) = 2, E(b) = 1, E(c) = 2,
and E(d) = 2. Hence vertex b 1s the center of that tree. On the other hand,
consider the tree in Fig. 3-9. The eccentricity of each of its six vertices is shown
next to the vertex. This tree has two vertices having the same minimum
eccentricity. Hence this tree has two centers. Some authors refer to such cen-
ters as bicenters, we shall call them just centers, because there will be no
occasion for confusion.

The reader can easily verify that a graph, in general, has many centers.
For example, in a graph that consists of just a circuit (a polygon), every vertex
is a center. In the case of a tree, however, Konig [1-7] proved the following
theorem:

THEOREM 3-9

Every tree has either one or two centers.

3

t9

3 Fig 3-9 Eccentricities of the vertices of
3 atree.
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Fig. 3-10 Finding a center of a tree.

Proof: The maximum distance, max d(v, v;), from a given vertex v to any
other vertex v; occurs only when v; is a pendant vertex. With this observation, let
us start with a tree 7 having more than two vertices. Tree T must have two or
more pendant vertices (Theorem 3-7). Delete all the pendant vertices from 7. The
resulting graph T is still a tree. What about the eccentricities of the vertices in 7' ?
A little deliberation will reveal that removal of all pendant vertices from 7 uniformly
reduced the eccentricities of the remaining vertices (i.e., vertices in 7”’) by one.
Therefore, all vertices that 7 had as centers will still remain centers in 7’. From
T’ we can again remove all pendant vertices and get another tree 7”/. We continue
this process (which is illustrated in Fig. 3-10) until there is left either a vertex
(which is the center of T) or an edge (whose end vertices are the two centers of T').
Thus the theorem.

47
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COROLLARY

From the argument used in proving Theorem 3-9, we see that if a tree T has two
centers, the two centers must be adjacent.

A Sociological Application: Suppose that the communication among a
group of 14 persons in a society is represented by the graph in Fig. 3-10(a),
where the vertices represent the persons and an edge represents the communi-
cation link between its two end vertices. Since the graph is connected, we
know that all the members can be reached by any member, either directly
or through some other members. But it is also important to note that the
graph is a tree—minimally connected. The group cannot afford to lose any
of the communication links.

The eccentricity of each vertex, E(v), represents how close v is to the farth-
est member of the group. In Fig. 3-10(a), vertex ¢ should be the leader of the
group, if closeness of communication were the criterion for leadership.

Radius and Diameter: If a tree has a center (or two centers), does it have
a radius also? Yes. The eccentricity of a center (which is the distance from the
center of the tree to the farthest vertex) in a tree is defined as the radius of the
tree. For instance, the radius of the tree in Fig. 3-10(a) is three. The diameter
of a tree T, on the other hand, is defined as the length of the longest path in
T. It is left as an exercise for the reader (Problem 3-6) to show that a radius
in a tree is not necessarily half its diameter.

3-5. ROOTED AND BINARY TREES

A tree in which one vertex (called the root) is distinguished from all the
others is called a rooted tree. For instance, in Fig. 3-3 vertex N, from where
all the mail goes out, is distinguished from the rest of the vertices. Hence N
can be considered the root of the tree, and so the tree is rooted. Similarly, in
Fig. 3-6 the start vertex may be considered as the root of the tree shown. In
a diagram of a rooted tree, the root is generally marked distinctly. We will
show the root enclosed in a small triangle. All rooted trees with four vertices
are shown in Fig. 3-11. Generally, the term tree means trees without any root.
However, for emphasis they are sometimes called free trees (or nonrooted
trees) to differentiate them from the rooted kind.

A\ /9\

—o

Fig. 3-11 Rooted trees with four vertices.
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Binary Trees: A special class of rooted trees, called binary rooted trees, is
of particular interest, since they are extensively used in the study of computer
search methods, binary identification problems, and variable-length binary
codes. A binary tree is defined as a tree in which there is exactly one vertex of
degree two, and each of the remaining vertices is of degree one or three (Fig.
3-12). (Obviously, we are talking about trees with three or more vertices.)
Since the vertex of degree two is distinct from all other vertices, this vertex
serves as a root. Thus every binary tree is a rooted tree. Two properties of
binary trees follow directly from the definition:

1. The number of vertices » in a binary tree is always odd. This is because
there is exactly one vertex of even degree, and the remaining n — 1 vertices
are of odd degrees. Since from Theorem 1-1 the number of vertices of odd
degrees is even, n — | is even. Hence » is odd.

2. Let p be the number of pendant vertices in a binary tree 7. Then
n — p — 1 is the number of vertices of degree three. Therefore, the number
of edges in T equals

T3 —p =Dt A=n—1;

hence

p="0 (3-1)

A nonpendant vertex in a tree is called an internal vertex. 1t follows from
Eq. (3-1) that the number of internal vertices in a binary tree 1s one less than
the number of pendant vertices. In a binary tree a vertex v, is said to be at
level I if v, is at a distance of /, from the root. Thus the root is at level 0. A
13-vertex, four-level binary tree is shown in Fig. 3-12. The number of vertices
at levels 1, 2, 3, and 4 are 2, 2, 4, and 4, respectively.

One of the most straightforward applications of binary trees is in search
procedures. Each vertex of a binary tree represents a test with two possible

Level O

Level 1

Level 2

Level 3

Level 4

Fig. 3-12 A 13-vertex, 4-level binary tree.
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outcomes. We start at the root, and the outcome of the test at the root sends
us to one of the two vertices at the next level, where further tests are made,
and so on. Reaching a specified pendant vertex (the goal of the search) termi-
nates the search. For such a search procedure it is often important to con-
struct a binary tree in which, for a given number of vertices n, the vertex
farthest from the root is as close to the root as possible. Clearly, there can be
only one vertex (the root) at level 0, at most two vertices at level 1, at most
four vertices at level 2, and so on. Therefore, the maximum number of vertices
possible in a k-level binary tree is

2042V 422 4 ... + 2K >

The maximum level, /_,,, of any vertex in a binary tree is called the height
of the tree. It is easy to see that the minimum possible height of an n-vertex
binary tree is

min lmax = [logz (n + 1) - 1]’ (3'2)

where [n] denotes the smallest integer greater than or equal to n.

On the other hand, to construct a binary tree for a given n such that the
farthest vertex is as far as possible from the root, we must have exactly two
vertices at each level, except at the O level. Therefore,

n— 1

max /,, = 5" (3-3)

For n = 11, binary trees realizing both these extremes are shown in Fig.
3-13.

Level Level

Y 0
|

|
2
3

2
4
3 5

: _ =1 _

min/ .= [(log, 12) = 1] max/ . = 5 T 5

(a) (b)

Fig. 3-13 Two ll-vertex binary trees.
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In analysis of algorithms we are generally interested in computing the sum
of the levels of all pendant vertices. This quantity, known as the path length
(or external path length) of a tree, can be defined as the sum of the path
lengths from the root to all pendant vertices. The path length of the binary
tree in Fig. 3-12, for example, is

14+3+3+4+4+4+ 444 =23

The path lengths of trees in Figs. 3-13(a) and (b) are 16 and 20, respectively.
The importance of the path length of a tree lies in the fact that this quantity
is often directly related to the execution time of an algorithm.

It can be shown that the type of binary tree in Fig. 3-13(a) (i.e., a tree with
2l=x=1 vertices at level /,,, — 1) yields the minimum path length for a given
n.

Weighted Path Length: In some applications, every pendant vertex v, of
a binary tree has associated with it a positive real number w,. Given w,,
w,, ..., w,_ the problem is to construct a binary tree (with m pendant ver-
tices) that minimizes

2w,

where /, is the level of pendant vertex v;, and the sum is taken over all pendant
vertices. Let us illustrate the significance of this problem with a simple exam-
ple.

A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 23 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) v,, v,, v;, and v, and corre-
sponding weights w, = .05, w, = .15, w; = .5, and w, = .3, such that the
quantity Y /,w, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].

In this problem of a Coke machine, many interesting variations are pos-
sible. For example, not all possible tests may be available, or they may not all
consume the same time.

Binary trees with minimum weighted path length have also been used in
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Fig. 3-14 Two binary trees with weighted pendant vertices.

constructing variable-length binary codes, where the letters of the alphabet
(A, B,C, ..., Z)are represented by binary digits. Since different letters have
different frequencies of occurrence (frequencies are interpreted as weights
Wi, Wy, ..., W), @ binary tree with minimum weighted path length corre-
sponds to a binary code of minimum cost; see [3-6]. For more on minimum-
path binary trees and their applications the reader is referred to [3-5] and
[3-7].

3-6. ON COUNTING TREES

In 1857, Arthur Cayley discovered trees while he was trying to count the
number of structural isomers of the saturated hydrocarbons (or paraffin
series) C,H,, .,. He used a connected graph to represent the C,H,,,, mole-
cule. Corresponding to their chemical valencies, a carbon atom was repre-
sented by a vertex of degree four and a hydrogen atom by a vertex of degree
one (pendant vertices). The total number of vertices in such a graph is

n =3k -+ 2,

and the total number of edges is

e = %(sum of degrees) = %(4k + 2k + 2)
=3k 4+ 1.

Since the graph is connected and the number of edges is one less than the
number of vertices, it is a tree. Thus the problem of counting structural
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isomers of a given hydrocarbon becomes the problem of counting trees (with
certain qualifying properties, to be sure).

The first question Cayley asked was: what is the number of different trees
that one can construct with n distinct (or labeled) vertices? If n = 4, for
instance, we have 16 trees, as shown in Fig. 3-15. The reader can satisfy him-
self that there are no more trees of four vertices. (Of course, some of these
trees are isomorphic—to be discussed later.)

A graph in which each vertex is assigned a unique name or label (i.e., no
two vertices have the same label), as in Fig. 3-15, is called a labeled graph.
The distinction between a labeled and an unlabeled graph is very important
when we are counting the number of different graphs. For instance, the four
graphs in the first row in Fig. 3-15 are counted as four different trees (even
though they are isomorphic) only because the vertices are labeled. If there
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Fig. 3-15 All 16 trees of four labeled vertices.
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were no distinction made between A, B, C, or D, these four trees would be
counted as one. A careful inspection of the graphs in Fig. 3-15 will reveal that
the number of unlabeled trees with four vertices (no distinction made between
A, B, C, and D) is only two. But first we shall continue with counting labeled
trees.

The following well-known theorem for counting trees was first stated and
proved by Cayley, and is therefore called Cayley’s theorem.

THEOREM 3-10

The number of labeled trees with #n vertices (n > 2) is n"~ 2.

Proof: The result was first stated and proved by Cayley. Many different proofs
with various approaches (all somewhat involved) have been published since. An
excellent summary of 10 such proofs is given by Moon [3-9]. We will give one
proof in Chapter 10.

Unlabeled Trees: In the actual counting of isomers of C,H,, ,,, Theorem
3-10is not enough. In addition to the constraints on the degree of the vertices,
two observations should be made:

1. Since the vertices representing hydrogen are pendant, they go with
carbon atoms only one way, and hence make no contribution to isomerism.
Therefore, we need not show any hydrogen vertices.

2. Thus the tree representing C,H,, ., reduces to one with k vertices,
each representing a carbon atom. In this tree no distinction can be made
between vertices, and therefore it is unlabeled.

Thus for butane, C,H,,, there are only two distinct trees (Fig. 3-16). As
every organic chemist knows, there are indeed exactly two different types of
butanes: n-butane and isobutane. It may be noted in passing that the four
trees in the first row of Fig. 3-15 are isomorphic to the one in Fig. 3-16(a);
and the other 12 are isomorphic to Fig. 3-16(b).

(a) (b)

Fig. 3-16 All trees of four unlabeled vertices.
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The problem of counting trees of different types will be taken up again
and discussed more thoroughly in Chapter 10.

3-7. SPANNING TREES

So far we have discussed the tree and its properties when it occurs as a
graph by itself. Now we shall study the tree as a subgraph of another graph.
A given graph has numerous subgraphs—from e edges, 2¢ distinct combina-
tions are possible. Obviously, some of these subgraphs will be trees. Out of
these trees we are particularly interested in certain types of trees, called
spanning trees—as defined next.

A tree T is said to be a spanning tree of a connected graph G if T is a
subgraph of G and T contains all vertices of G. For instance, the subgraph in
heavy lines in Fig. 3-17 is a spanning tree of the graph shown.

Since the vertices of G are barely hanging together in a spanning tree, it is
a sort of skeleton of the original graph G. This is why a spanning tree is some-
times referred to as a skeleton or scaffolding of G. Since spanning trees are the
largest (with maximum number of edges) trees among all trees in G, it is also
quite appropriate to call a spanning tree a maximal tree subgraph or maximal
tree of G.

It is to be noted that a spanning tree is defined only for a connected graph,
because a tree is always connected, and in a disconnected graph of n vertices
we cannot find a connected subgraph with » vertices. Each component (which
by definition is connected) of a disconnected graph, however, does have a
spanning tree. Thus a disconnected graph with kK components has a spanning
forest consisting of k spanning trees. (A collection of trees is called a forest.)

Finding a spanning tree of a connected graph G is simple. If G has no cir-
cuit, it is its own spanning tree. If G has a circuit, delete an edge from the
circuit. This will still leave the graph connected (Problem 2-10). If there are
more circuits, repeat the operation till an edge from the last circuit is delet-
ed—Ieaving a connected, circuit-free graph that contains all the vertices of G.
Thus we have

Fig. 3-17 Spanning tree.
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THEOREM 3-11

Every connected graph has at least one spanning tree.

Anedge in a spanning tree T is called a branch of T. An edge of G that is not
in a given spanning tree 7 1s called a chord. In electrical engineering a chord is
sometimes referred to as a tie or a link. For instance, edges b,, b,, b, b,, by,
and b, are branches of the spanning tree shown in Fig. 3-17, while edges
Cy, Cqy €3, C4, Cs, Cg, C4, and ¢y are chords. It must be kept in mind that bran-
ches and chords are defined only with respect to a given spanning tree. An
edge that is a branch of one spanning tree 7, (in a graph G) may be a chord
with respect to another spanning tree 7.

It is sometimes convenient to consider a connected graph G as a union of
two subgraphs, T and T); that is,

TUT=G,

where T is a spanning tree, and T is the complement of T in G. Since the sub-
graph T is the collection of chords, it is quite appropriately referred to as the
chord set (or tie set or cotree) of T. From the definition, and from Theorem
3-3, the following theorem is evident.

THEOREM 3-12

With respect to any of its spanning trees, a connected graph of » vertices and
e edges has n — 1 tree branches and ¢ — n + 1 chords.

For example, the graph in Fig. 3-17 (with n = 7, ¢ = 14), has six tree
branches and eight chords with respect to the spanningtree {b,, b,, b,, b,, b,
bs}. Any other spanning tree will yield the same numbers.

If we have an electric network with e elements (edges) and »n nodes (ver-
tices), what is the minimum number of elements we must remove to eliminate
all circuits in the network ? The answer 1s e — n -+ 1. Similarly, if we have a
farm consisting of six walled plots of land, as shown in Fig. 3-18, and these
plots are full of water, how many walls will have to be broken so that all the
water can be drained out? Here n = 10 and e == 15. We shall have to select

Fig. 3-18 Farm with walled plots of
land.
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a set of six (15 — 10 + 1 = 6) walls such that the remaining nine constitute
a spanning tree. Breaking these six walls will drain the water out.

Rank and Nullity: When someone specifies a graph G, the first thing he is
most likely to mention is #, the number of vertices in G. Immediately follow-
ing comes e, the number of edges in G. Then k, the number of components G
has. If kK = 1, G is connected. How are these three numbers of a graph relat-
ed? Since every component of a graph must have at least one vertex, n > k.
Moreoever, the number of edges in a component can be no less than the num-
ber of vertices in that component minus one. Therefore, e > n — k. Apart
from the constraints n — k > 0 and e — n + k > 0, these three numbers
n, e, and k are independent, and they are fundamental numbers in graphs.
(Needless to mention, these numbers alone are not enough to specify a graph,
except for trivial cases.)

From these three numbers are derived two other important numbers
called rank and nullity, defined as

rank r=n—k,
nullity u=e—n-+k.
The rank of a connected graphis n — 1, and the nullity, e — n + 1. Although
the real significance of these numbers will be clear in Chapter 7, it may be
observed here that
rank of G = number of branches in any spanning
tree (or forest) of G,
nullity of G = number of chords in G,

rank + nullity = number of edges in G.

The nullity of a graph is also referred to as its cyclomatic number, or first
Betti number.

3-8. FUNDAMENTAL CIRCUITS

You may have noticed that if we add an edge between any two vertices of
a tree (say, in Fig. 3-1) a circuit is created. This is because there already exists
one path between any two vertices of a tree; adding an edge between them
creates an additional path, and hence a circuit. Along this line of reasoning,
it 1s not difficult to prove

THEOREM 3-13

A connected graph G is a tree if and only if adding an edge between any two
vertices in G creates exactly one circuit.
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Let us now consider a spanning tree 7 in a connected graph G. Adding
any one chord to T will create exactly one circuit. Such a circuit, formed by
adding a chord to a spanning tree, is called a fundamental circuit.

How many fundamental circuits does a graph have ? Exactly as many as
the number of chords, 4 (= e — n + k). How many circuits does a graph
have in all? We know that one circuit is created by adding any one chord to a
tree. Suppose that we add one more chord. Will it create exactly one more
circuit? What happens if we add all the chords simultaneously to the tree?

Let us look at the tree {b,, b,, b;, b,, by, b} in Fig. 3-17. Adding c, to it,
we get a subgraph {b,, b,, b, b,, bs, b, c,}, which has one circuit (fundamen-
tal circuit), {b,, b,, b;, bs, c,}. Had we added the chord c, (instead of ¢,) to the
tree, we would have obtained a different fundamental circuit, {b,, b,, b, c,}.
Now suppose that we add both chords ¢, and ¢, to the tree. The subgraph
{b,, by, b;, b, b, bg, c,, c,} has not only the fundamental circuits we just
mentioned, but it has also a third circuit, {b,, ¢,, ¢,}, which is not a funda-
mental circuit. Although there are 75 circuits in Fig. 3-17 (enumerated by
computer), only eight are fundamental circuits, each formed by one chord
(together with the tree branches).

Two comments may be appropriate here. First, a circuit is a fundamental
circuit only with respect to a given spanning tree. A given circuit may be fun-
damental with respect to one spanning tree, but not with respect to a different
spanning tree of the same graph. Although the number of fundamental
circuits (as well as the total number of circuits) in a graph is fixed, the cir-
cuits that become fundamental change with the spanning trees.

Second, in most applications we are not interested in all the circuits of
a graph, but only in a set of fundamental circuits, which fortuitously are
a lot easier to track. The concept of a fundamental circuit, introduced by
Kirchhoff, is of enormous significance in electrical network analysis. What
Kirchhoff showed, which now every sophomore in electrical engineering
knows, is that no matter how many circuits a network contains we need con-
sider only fundamental circuits with respect to any spanning tree. The rest
of the circuits (as we shall prove rigorously in Chapter 7) are combinations of
some fundamental circuits.

3-9. FINDING ALL SPANNING TREES OF A GRAPH

Usually, in a given connected graph there are a large number of spanning
trees. In many applications we require all spanning trees. One reasonable
way to generate spanning trees of a graph is to start with a given spanning
tree, say tree T, (a b ¢ d in Fig. 3-19). Add a chord, say 4, to the tree 7,. This
forms a fundamental circuit (b ¢ & din Fig. 3-19). Removal of any branch,
say ¢, from the fundamental circuit b ¢ 4 d just formed will create a new
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Fig. 3-19 Graph and three of its spanning trees.

spanning tree 7. This generation of one spanning tree from another, through
addition of a chord and deletion of an appropriate branch, is called a cyclic
interchange or elementary tree transformation. (Such a transformation is a
standard operation in the iteration sequence for solving certain transporta-
tion problems.)

In the above procedure, instead of deleting branch ¢, we could have de-
leted d or b and thus would have obtained two additional spanning trees
ab c hand a c h d. Moreover, after generating these three trees, each with
chord 4 in it, we can restart with 7', and add a different chord (e, f, or g) and
repeat the process of obtaining a different spanning tree each time a branch
is deleted from the fundamental circuit formed. Thus we have a procedure
for generating spanning trees for any given graph.

As we shall see in Chapter 13, the topological analysis of a linear elec-
trical network essentially reduces to the generation of trees in the correspond-
ing graph. Therefore, finding an efficient procedure for generating all trees
of a graph is a very important practical problem.

The procedure outlined above raises many questions. Can we start from
any spanning tree and get a desired spanning tree by a number of cyclic
exchanges? Can we get all spanning trees of a given graph in this fashion?
How long will we have to continue exchanging edges? Out of all possible
spanning trees that we can start with, is there a preferred one for starting?
Let us try to answer some of these questions; others will have to wait until
Chapters 7, 10, and 11.

The distance between two spanning trees T, and T, of a graph G is defined
as the number of edges of G present in one tree but not in the other. This
distance may be written as d(7;, T,). For instance, in Fig. 3-19 d(T}, T;) = 3.

Let 7, T, be the ring sum of two spanning trees 7, and T; of G (as
defined in Chapter 2, T; @ T, is the subgraph of G containing all edges of
G that are either in T, or in T, but not in both). Let N(g) denote the number
of edges in a graph g. Then, from definition,

d(T,, T)) =+ N(T,® T)).
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It is not difficult to see that the number d(7T,, T;) is the minimum number of
cyclic interchanges involved in going from T, to T',. The reader is encouraged
to prove the following two theorems.

THEOREM 3-14

The distance between the spanning trees of a graph is a metric. That is, it satisfies

d(T;;,T;))>0 and d(T,T;) =0ifandonlyif 7; = T;,
d(y‘” Tj) = d(Th 7:)9
d(T, T) <d(T, Ty) + d(Ty, T)).

THEOREM 3-15

Starting from any spanning tree of a graph G, we can obtain every spanning
tree of G by successive cyclic exchanges.

Since in a connected graph G of rank r (i.e., of r + | vertices) a spanning
tree has r edges, we have the following results:
The maximum distance between any two spanning trees in G is

max d(T,, T;) = % max N(T, ® T))
< r, the rank of G.

Also, if u is the nullity of G, we know that no more than u edges of a span-
ning tree 7, can be replaced to get another tree 7,.

Hence max d(T,, T,) < u;

combining the two,
max d(T,, T;) < min(y, r),

where min(u, r) is the smaller of the two numbers g and r of the graph G.
Central Tree: For a spanning tree T, of a graph G, let max d(To, T))

denote the maximal distance between T, and any other spannin:g tree of G.
Then T, is called a central tree of G if

max d(T,, T;) < max d(T, T)) for every tree T of G.
i J

The concept of a central tree is useful in enumerating all trees of a given
graph. A central tree in a graph is, in general, not unique. For more on cen-
tral trees the reader should see [3-1] and [3-4].

Tree Graph: The tree graph of a given graph G is defined as a graph in
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which each vertex corresponds to a spanning tree of G, and each edge cor-
responds to a cyclic interchange between the spanning trees of G represented
by the two end vertices of the edge. From Theorem 3-15 we know that start-
ing from any spanning tree we can obtain all other spanning trees through
cyclic interchanges (or elementary tree transformations). Therefore, the tree
graph of any given (finite, connected) graph is connected. For additional
properties of tree graphs, the reader should see [3-3].

3-10. SPANNING TREES IN A WEIGHTED GRAPH

As discussed earlier in this chapter, a spanning tree in a graph G is a
minimal subgraph connecting all the vertices of G. If graph G is a weighted
graph (i.e., if there is a real number associated with each edge of G), then
the weight of a spanning tree T of G is defined as the sum of the weights of
all the branches in 7. In general, different spanning trees of G will have
different weights. Among all the spanning trees of G, one with the smallest
weight is of practical significance. (There may be several spanning trees with
the smallest weight; for instance, in a graph of n vertices in which every edge
has unit weight, all spanning trees have a weight of n — 1 units.) A spanning
tree with the smallest weight in a weighted graph is called a shortest spanning
tree or shortest-distance spanning tree or minimal spanning tree.

One possible application of the shortest spanning tree is as follows: Sup-
pose that we are to connect » cities v,, v,, . . ., v, through a network of roads.
The cost ¢;; of building a direct road between v, and v, is given for all pairs of
cities where roads can be built. (There may be pairs of cities between which
no direct road can be built.) The problem is then to find the least expensive
network that connects all n cities together. It is immediately evident that this
connected network must be a tree: otherwise, we can always remove some
edges and get a connected graph with smaller weight. Thus the problem of
connecting n cities with a least expensive network is the problem of finding
a shortest spanning tree in a connected weighted graph of n vertices. A neces-
sary and sufficient condition for a spanning tree to be shortest is given by

THEOREM 3-16

A spanning tree T (of a given weighted connected graph G) is a shortest spanning
tree (of G) if and only if there exists no other spanning tree (of G) at a distance of
one from T whose weight is smaller than that of 7.

Proof: The necessary or the “only if” condition is obvious; otherwise, we shall
get another tree shorter than T by a cyclic interchange. The fact that this condition
is also sufficient is remarkable and is not obvious. It can be proved as follows:

Let T, be a spanning tree in G satisfying the hypothesis of the theorem (i.e.,
there is no spanning tree at a distance of one from 7'; which is shorter than T}).
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The proof will be completed by showing that if 7, is a shortest spanning tree (dif-
ferent from T,) in G, the weight of T will also be equal to that of 7,. Let 7, be
a shortest spanning tree in G. Clearly, 7, must also satisfy the hypothesis of the
theorem (otherwise there will be a spanning tree shorter than 7, at a distance of
one from T,, violating the assumption that 7, is shortest).

Consider an edge e in T, which is not in T;. Adding e to T, forms a fundamental
circuit with branches in 7';. Some, but not all, of the branches in 7', that form the
fundamental circuit with e may also be in T,; each of these branches in 7, has
a weight smaller than or equal to that of e, because of the assumption on T;.
Amongst all those edges in this circuit which are not in T, at least one, say b;, must
form some fundamental circuit (with respect to T5) containing e. Because of the
minimality assumption on T, weight of b; cannot be less than that of e. Therefore
b; must have the same weight as e. Hence the spanning tree 7, = (T, Ue — b;),
obtained from T, through one cycle exchange, has the same weight as 7,. But
T, has one edge more in common with T,, and it satisfies the condition of Theorem
3-16. This argument can be repeated, producing a series of trees of equal weight,

T, T, T4,...,eacha unit distance closer to T, until we get T, itself.
This proves that if none of the spanning trees at a unit distance from 7 is shorter

than 7, no spanning tree shorter than 7 exists in the graph. [l

Algorithm for Shortest Spanning Tree: There are several methods available
for actually finding a shortest spanning tree in a given graph, both by hand
and by computer. One algorithm due to Kruskal [3-8] is as follows: List all
edges of the graph G in order of nondecreasing weight. Next, select a smallest
edge of G. Then for each successive step select (from all remaining edges of
G) another smallest edge that makes no circuit with the previously selected
edges. Continue until n» — 1 edges have been selected, and these edges will
constitute the desired shortest spanning tree. The validity of the method
follows from Theorem 3-16.

Another algorithm, which does not require listing all edges in order of
nondecreasing weight or checking at each step if a newly selected edge forms
a circuit, is due to Prim [3-10]. For Prim’s algorithm, draw » isolated vertices
and label them v,, v,, ..., v,. Tabulate the given weights of the edges of G
in an n by n table. (Note that the entries in the table are symmetric with re-
spect to the diagonal, and the diagonal is empty.) Set the weights of non-
existent edges (corresponding to those pairs of cities between which no direct
road can be built) as very large.

Start from vertex v, and connect it to its nearest neighbor (i.e., to the
vertex which has the smallest entry in row 1 of the table), say v,. Now con-
sider v, and v, as one subgraph, and connect this subgraph to its closest
neighbor (i.e., to a vertex other than v, and v, that has the smallest entry
among all entries in rows 1 and k). Let this new vertex be v,. Next regard the
tree with vertices v,, v,, and v, as one subgraph, and continue the process
until all # vertices have been connected by n — 1 edges. Let us now illustrate
this method of finding a shortest spanning tree.
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Fig. 3-20 Shortest spanning tree in a weighted graph.

A connected weighted graph with 6 vertices and 12 edges is shown in Fig.
3-20(a). The weight of its edges is tabulated in Fig. 3-20(b). We start with v,
and pick the smallest entry in row 1, which is either (v,, v,) or (v,, v,). Let us
pick (v,, v). [Had we picked (v,, v,) we would have obtained a different
shortest tree with the same weight.] The closest neighbor of subgraph (v,, v;)
is v,, as can be seen by examining all the entries in rows | and 5. The three re-
maining edges selected following the above procedure turn out to be (v,, v;),
(v,,v;), and (v,, v,) in that sequence. The resulting tree—a shortest spanning
tree—is shown in Fig. 3-20(a) in heavy lines. The weight of this tree is 41.5
units.

Degree-Constrained Shortest Spanning Tree: In a shortest spanning tree
resulting from the preceding construction, a vertex v, can end up with any
degree; that is, | < d(v;) << n — 1. In some practical cases an upper limit on
the degree of every vertex (of the resulting spanning tree) has to be imposed.
For instance, in an electrical wiring problem, one may be required to wire
together » pins (using as little wire as possible) with no more than three wires
wrapped around any individual pin. Thus, in this particular case,

div,) <3 for every v,.
Such a spanning tree is called a degree-constrained shortest spanning tree.
In general, the problem may be stated as follows: Given a weighted con-
nected graph G, find a shortest spanning tree 7 in G such that

dv,) <k for every vertex v, in T.

If k = 2, this problem, in fact, reduces to the problem of finding the shortest
Hamiltonian path, as well as the traveling-salesman problem (without the
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salesman returning to his home base), discussed at the end of Chapter 2. So
far, no efficient method of finding an arbitrarily degree-constrained shortest
spanning tree has been found.

SUMMARY

This chapter dealt with a particular type of connected graph called a tree.
Because of their wide applications, trees form the most important topic in
graph theory. Different types of trees, such as labeled and unlabeled, rooted
and unrooted, were discussed, together with their properties and applications.

Of special interest are those trees that are subgraphs of a given connected
graph G containing all vertices of G. Such trees are called spanning trees of
G. Finding all spanning trees of a given graph is of great practical importance,
and so is the problem of finding a shortest spanning tree in a given weighted
graph.

Other related concepts, such as centers, radius, and diameter of a tree,
rank and nullity of a graph, fundamental circuits, branches and chords,
cyclic interchange, distance between spanning trees, and tree graphs, were
also introduced and studied. Trees, spanning trees, and fundamental circuits
will continue to appear from time to time in most of the succeeding chapters.
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PROBLEMS

Draw all trees of n labeled vertices for n = 1, 2, 3, 4, and 5.
Draw all trees of n unlabeled vertices for n = 1, 2, 3, 4, and 5.
Draw all unlabeled rooted trees of n vertices for n = 1, 2, 3, 4, and 5.

It can be shown that there are only six different (nonisomorphic) trees of six vertices.
Two such trees are given in Fig. 2-4. Draw the other four.

Prove Theorem 3-4.

Show a tree in which its diameter is not equal to twice the radius. Under what
condition does this inequality hold? Elaborate.

Cite three different situations (games, activities, or problems) that can be represented
by trees. Explain.

How many isomers does pentane CsH 2 have? Hexane, CéH4?

Suppose you are given eight coins and are told that seven of them are of equal
weight, and one coin is either heavier or lighter than the rest. You are provided
with an equal-arm balance, which you may use only three times, for comparing
coins. Sketch a strategy in the form of a decision tree for identifying the noncon-
forming coin, as well as for finding out whether it is heavier or lighter than the rest.
Sketch all (unlabeled) binary trees with six pendant vertices. Find the path length
of each. [Hint: Distribute the 11 vertices (because n = 6 -+ 5) among different
levels. Observe that level 0 has exactly one vertex, level 1 has exactly two vertices;
level 2 can have either two or four vertices; and so on. There are six such trees, and
two of them are shown in Fig. 3-13.]

Sketch all spanning trees of the graph in Fig. 2-1.

Show that a path is its own spanning tree.
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3-13.

3-14.

3-15.
3-16.
3-17.

3-18.
3-19.

3-20.

3-21.
3-22.

3-23.

3-24.

3-25.

3-26.

3-27.

3-28.

3-29.

3-30.

3-31.

3-32.

3-33.
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Prove that a pendant edge (an edge whose one end vertex is of degree one) in a
connected graph G is contained in every spanning tree of G.

Prove that any subgraph g of a connected graph G is contained in some span-
ning tree of G if and only if g contains no circuit.

What is the nullity of a complete graph of »n vertices?
Show that a Hamiltonian path is a spanning tree.

Prove that any circuit in a graph G must have at least one edge in common with
a chord set.

Prove Theorem 3-13.

Find a spanning tree at a distance of four from spanning tree {b1, b2, b3, bs, bs, bs}
in Fig. 3-17. List all fundamental circuits with respect to this new spanning tree.

Show that the distance between two spanning trees as defined in this chapter is a
metric.

Can you construct a graph if you are given all its spanning trees? How?

Prove that the nullity of a graph does not change when you either insert a vertex
in the middle of an edge, or remove a vertex of degree two by merging two edges
incident on it.

Prove that any given edge of a connected graph G is a branch of some spanning
tree of G. Is it also true that any arbitrary edge of G is a chord for some spanning
tree of G?

Suggest a method for determining the total number of spanning trees of a connected
graph without actually listing them.

Prove that two colors are necessary and sufficient to paint all n vertices (n = 2) of
a tree, such that no edge in the tree has both of its end vertices of the same color.
(This fact is expressed by the statement that the chromatic number of a tree is two.)

Suppose that you are given a set of n positive integers. State some necessary condi-
tions of this set so that the set can be the degrees of all the n vertices of a tree.
Are these conditions sufficient also?

Let » be a vertex in a connected graph G. Prove that there exists a spanning tree T
in G such that the distance of every vertex from v is the same both in G and in T.

Let T, and T, be two spanning trees of a connected graph G. If edge e is in T,
but not in T, prove that there exists another edge fin T2 but not in T such that
subgraphs (T} — e) U fand (T2 — f) U e are also spanning trees of G.

Construct a tree graph (with 16 vertices, each corresponding to a tree in Fig. 3-15)
of a labeled complete graph of four vertices.

In the tree graph obtained in Problem 3-29, observe the following properties (dis-
covered by R. L. Cummins). A tree graph has at least one Hamiltonian circuit,
and an arbitrary edge of a tree graph can be included in a Hamiltonian circuit.

In a given connected weighted graph G, suppose there exists an edge es whose
weight is smaller than that of any other in G. Prove that every shortest spanning
tree in G must contain e;.

Let G be a connected weighted graph in which every edge belongs to some circuit.
If e; is the edge with weight greater than that of any other edge in G, show that no
shortest spanning tree in G will contain e;.

Show by constructing counterexamples that in Problems 3-31 and 3-32 the same
cannot be said of the second smallest and the second largest edges, respectively.
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3-34. Use the algorithm of Kruskal, as outlined in this chapter, to find a shortest spanning
tree in the graph of Fig. 3-20(a).

3-35. Pick 15 large cities in the United States and obtain the 105 intercity distances from
an atlas. Find the shortest spanning tree connecting these cities by using (a)
Kruskal’s method, and (b) Prim’s method. Compare their relative efficiencies.



4 CUT-SETS AND CUT-VERTICES

In Chapter 3 we studied the spanning tree—a special type of subgraph of
a connected graph G—which kept all the vertices of G together. In this chap-
ter we shall study the cut-set—another type of subgraph of a connected graph
G whose removal from G separates some vertices from others in G. Properties
of cut-sets and their applications will be covered. Other related topics, such
as connectivity, separability, and vulnerability of graphs, will also be dis-
cussed.

4-1. CUT-SETS

In a connected graph G, a cut-set is a set of edgest whose removal from G
leaves G disconnected, provided removal of no proper subset of these edges
disconnects G. For instance, in Fig. 4-1 the set of edges {a, ¢, d, f}is a cut-set.
There are many other cut-sets, such as{a, b, g},{a, b, e, f},and {d, h, f}. Edge
{k} alone is also a cut-set. The set of edges {q, ¢, A, d}, on the other hand, is not
a cut-set, because one of its proper subsets, {q, c, A}, is a cut-set.

To emphasize the fact that no proper subset of a cut-set can be a cut-set,
some authors refer to a cut-set as a minimal cut-set, a proper cut-set, or a
simple cut-set. Sometimes a cut-set is also called a cocycle. We shall just use
the term cut-set.

A cut-set always “cuts” a graph into two. Therefore, a cut-set can also be
defined as a minimal set of edges in a connected graph whose removal reduces
the rank of the graph by one. The rank of the graph in Fig. 4.1(b), for in-

+Since a set of edges (together with their end vertices) constitutes a subgraph, a cut-
set in G is a subgraph of G.

68
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Fig. 4-1 Removal of a cut-set {a, ¢, d, f} from a graph “cuts” it
into two.

stance, is four, one less than that of the graph in Fig. 4.1(a). Another way of
looking at a cut-set is this: if we partition all the vertices of a connected graph
G into two mutually exclusive subsets, a cut-set is a minimal number of edges
whose removal from G destroys all paths between these two sets of vertices.
For example, in Fig. 4-1(a) cut-set {a, ¢, d, f} connects vertex set {v,, v,, v4}
with {v,, v,, v5}. (Note that one or both of these two subsets of vertices may
consist of just one vertex.) Since removal of any edge from a tree breaks the
tree into two parts, every edge of a tree is a cut-set.

Cut-sets are of great importance in studying properties of communication
and transportation networks. Suppose, for example, that the six vertices in
Fig. 4-1(a) represent six cities connected by telephone lines (edges). We wish
to find out if there are any weak spots in the network that need strengthening
by means of additional telephone lines. We look at all cut-sets of the graph,
and the one with the smallest number of edges is the most vulnerable. In Fig.
4-1(a), the city represented by vertex v, can be severed from the rest of the
network by the destruction of just one edge. After some additional study of
the properties of cut-sets, we shall return to their applications.

4-2. SOME PROPERTIES OF A CUT-SET

Consider a spanning tree 7' in a connected graph G and an arbitrary cut-
set S in G. Is it possible for .S not to have any edge in common with 7?7 The
answer is no. Otherwise, removal of the cut-set S from G would not discon-
nect the graph. Therefore,
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THEOREM 4-1

Every cut-set in a connected graph G must contain at least one branch of every
spanning tree of G.

Will the converse also be true? In other words, will any minimal set of
edges containing at least one branch of every spanning tree be a cut-set? The
answer is yes, by the following reasoning:

In a given connected graph G, let Q be a minimal set of edges containing
at least one branch of every spanning tree of G. Consider G — Q, the sub-
graph that remains after removing the edges in Q from G. Since the subgraph
G — Q contains no spanning tree of G, G — Q is disconnected (one compo-
nent of which may just consist of an isolated vertex). Also, since Q is a mini-
mal set of edges with this property, any edge e from Q returned to G — Q
will create at least one spanning tree. Thus the subgraph G — Q + e will be
a connected graph. Therefore, Q is a minimal set of edges whose removal
from G disconnects G. This, by definition, is a cut-set. Hence

THEOREM 4-2

In a connected graph G, any minimal set of edges containing at least one branch
of every spanning tree of G is a cut-set.

THEOREM 4-3

Every circuit has an even number of edges in common with any cut-set.

Proof: Consider a cut-set S in graph G (Fig. 4-2). Let the removal of S partition
the vertices of G into two (mutually exclusive or disjoint) subsets V; and V,. Con-
sider a circuit I" in G. If all the vertices in I" are entirely within vertex set V; (or V),
the number of edges common to S and I' is zero; that is, N(S N IT") = 0, an even
number.t

If, on the other hand, some vertices in I" are in ¥, and some in V,, we traverse

\
!
|
]
|
f
|

Circuit I" shown in heavy lines, and is
traversed along the direction of the arrows

Fig. 4-2 Circuit and a cut-set in G.

tAs in Chapter 3, N(g) stands for the number of edges in subgraph g.
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back and forth between the sets V'; and V, as we traverse the circuit (see Fig. 4-2).
Because of the closed nature of a circuit, the number of edges we traverse between
V, and V, must be even. And since very edge in S has one end in V; and the other
in V,, and no other edge in G has this property (of separating sets ¥, and V),
the number of edges common to S and I is even.

4-3. ALL CUT-SETS IN A GRAPH

In Section 4-1 it was shown how cut-sets are used to identify weak spots
in acommunication net. For this purpose we list all cut-sets of the correspond-
ing graph, and find which ones have the smallest number of edges. It must
also have become apparent to you that even in a simple example, such as in
Fig. 4-1, there is a large number of cut-sets, and we must have a systematic
method of generating all relevant cut-sets.

In the case of circuits, we solved a similar problem by the simple technique
of finding a set of fundamental circuits and then realizing that other circuits in
a graph are just combinations of two or more fundamental circuits. We shall
follow a similar strategy here. Just as a spanning tree is essential for defining
a set of fundamental circuits, so is a spanning tree essential for a set of fun-
damental cut-sets. It will be beneficial for the reader to look for the parallelism
between circuits and cut-sets.

Fundamental Cut-Sets: Consider a spanning tree T of a connected graph
G. Take any branch b in T. Since {b} is a cut-set in T, {b} partitions all vertices
of T into two disjoint sets—one at each end of b. Consider the same partition
of vertices in G, and the cut set S in G that corresponds to this partition. Cut-
set S will contain only one branch b of T, and the rest (if any) of the edges in
S are chords with respect to 7. Such a cut-set S containing exactly one branch
of a tree T is called a fundamental cut-set with respect to 7. Sometimes a
fundamental cut-set is also called a basic cut-set. In Fig. 4-3, a spanning tree

Fig. 4-3 Fundamental cut-sets of a graph.
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T (in heavy lines) and all five of the fundamental cut-sets with respect to T’
are shown (broken lines “cutting” through each cut-set).

Just as every chord of a spanning tree defines a unique fundamental cir-
cuit, every branch of a spanning tree defines a unique fundamental cut-set. It
must also be kept in mind that the term fundamental cut-set (like the term
fundamental circuit) has meaning only with respect to a given spanning tree.

Now we shall show how other cut-sets of a graph can be obtained from a
given set of cut-sets.

THEOREM 4-4

The ring sum of any two cut-sets in a graph is either a third cut-set or an edge-
disjoint union of cut-sets.

Outline of Proof: Let S| and S, be two cut-sets in a given connected graph
G. Let V, and ¥V, be the (unique and disjoint) partitioning of the vertex set
V of G corresponding to S,. Let V5 and V, be the partitioning corresponding
to S,. Clearly [see Figs. 4-4(a) and (b)],

V]UVZZV and Vlszzg,
V3UV4:V and V3mV4:@.

Now let the subset (V, N V,) U (V, N V;) be called Vs, and this by
definition is the same as the ring sum V; @ V;. Similarly, let the subset
V, N V3) U (V, N V,) be called Vg, which is the same as V, @ V5. See Fig.
4-4(c).

The ring sum of the two cut-sets S; @ S, can be seen to consist only of
edges that join vertices in V5 to those in V. Also, there are no edges outside
S, @ S, that join vertices in V; to those in V.

Thus the set of edges S, @ S, produces a partitioning of V into V' and
Vs such that

VsUV6:V and VsmVszg.
Hence S, @ S, is a cut-set if the subgraphs containing V5 and ¥V, each remain

connected after S; @ S, is removed from G. Otherwise, S; @ S, is an edge-
disjoint union of cut-sets.

Example: In Fig. 4-3 let us consider ring sums of the following three pairs
of cut-sets.

{de,fYD{f g h} =1{d e g h}, another cut-set,
{a, b} D {b, c,e,f} =1{a, c, e, [}, another cut-set,
{doegh®{figkl=1{def hkl
= {d, e, f} U {h, k}, an edge-disjoint

union of cut-sets.
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(b) ()

Fig. 4-4 Two cut-sets and their partitionings.

So we have a method of generating additional cut-sets from a number of
given cut-sets. Obviously, we cannot start with any two cut-sets in a given
graph and hope to obtain all its cut-sets by this method. What then is a
minimal set of cut-sets from which we can obtain every cut-set of G by taking
ring sums? The answer (to be proved in Chapter 6) is the set of all fundamen-
tal cut-sets with respect to a given spanning tree.

4-4, FUNDAMENTAL CIRCUITS AND CUT-SETS

Consider a spanning tree 7'in a given connected graph G. Let ¢, be a chord
with respect to 7, and let the fundamental circuit made by ¢, be called T", con-
sisting of k& branches b, b,, . . ., b, in addition to the chord c,; that is,

I ={c,b,,b,,...,b,} isafundamental circuit with respect to 7.

Every branch of any spanning tree has a fundamental cut-set associated with
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it. Let S, be the fundamental cut-set associated with b,, consisting of g chords
in addition to the branch b, ; that is,

S, =1{b,,c., ¢, ...,c,} I1safundamental cut-set with respect to 7.

Because of Theorem 4-3, there must be an even number of edges common
toI and S,. Edge b, is in both I" and S, and there is only one other edge in
I" (which is ¢,) that can possibly also be in S,. Therefore, we must have two
edges b, and ¢, common to S, and I'. Thus the chord ¢, is one of the chords

Cis Caye vy Cq
Exactly the same argument holds for fundamental cut-sets associated with
b,, bs, ..., and b,. Therefore, the chord c, is contained in every fundamental

cut-set associated with branches in I'.

Is it possible for the chord ¢; to be in any other fundamental cut-set S’
(with respect to 7T, of course) besides those associated with b,, b,, ... and b,?
The answer is no. Otherwise (since none of the branches in I" are in S”), there
would be only one edge ¢, common to S’ and I', a contradiction to Theorem
4-3. Thus we have an important result.

THEOREM 4-5

With respect to a given spanning tree 7, a chord ¢; that determines a fundamental
circuit I' occurs in every fundamental cut-set associated with the branches in I’
and in no other.

As an example, consider the spanning tree {b, ¢, e, A, k}, shown in heavy
lines, in Fig. 4-3. The fundamental circuit made by chord fis

{f, e, h, k}.

The three fundamental cut-sets determined by the three branches e, 4, and k
are

determined by branch e: {d, e, [},
determined by branch 4: {f] g, A},
determined by branch k: {f, g, k}.

Chord f occurs in each of these three fundamental cut-sets, and there is no
other fundamental cut-set that contains f. The converse of Theorem 4-5 is
also true.

THEOREM 4-6

With respect to a given spanning tree 7, a branch b; that determines a funda-
mental cut-set S is contained in every fundamental circuit associated with the
chords in S, and in no others.
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Proof: The proof consists of arguments similar to those that led to Theorem
4-5. Let the fundamental cut-set S determined by a branch b; be

S = {bia C15€C25 ¢« -y Cp}a
and let I'; be the fundamental circuit determined by chord ¢, :
r, = {Cl,bl,bz,. . ,bq}.

Since the number of edges common to S and I'; must be even, b; must be in IT',.

The same is true for the fundamental circuits made by chords ¢, 3, . . ., c).
On the other hand, suppose that b; occurs in a fundamental circuit I',,; made
by a chord other than c,, c;,. .., c¢,. Since none of the chords ¢y, ¢z, ..., ¢, is

in I, ,, there is only one edge b, common to a circuit I',,, and the cut-set S,
which is not possible. Hence the theorem. [l

Turning again for illustration to the graph in Fig. 4-3, consider branch
e of spanning tree {b, c, e, h, k}. The fundamental cut-set determined by e is

{e, d, f}.
The two fundamental circuits determined by chords 4 and f are

determined by chord d: {4, ¢, e},
determined by chord /= {f, e, A, k}.

Branch e is contained in both these fundamental circuits, and none of the
remaining three fundamental circuits contains branch e.

4-5. CONNECTIVITY AND SEPARABILITY

Edge Connectivity: Each cut-set of a connected graph G consists of a cer-
tain number of edges. The number of edges in the smallest cut-set (i.e., cut-
set with fewest number of edges) is defined as the edge connectivity of G.
Equivalently, the edge connectivity of a connected graphf can be defined as
the minimum number of edges whose removal (i.e., deletion) reduces the
rank of the graph by one. The edge connectivity of a tree, for instance, is one.
The edge connectivities of the graphs in Figs. 4-1(a), 4-3, 4-5 are one, two,
and three, respectively.

Vertex Connectivity: On examining the graph in Fig. 4-5, we find that
although removal of no single edge (or even a pair of edges) disconnects the

tAlthough we shall talk of edge connectivity and vertex connectivity only for a con-
nected graph, some authors define both the edge connectivity and vertex connectivity of
a disconnected graph as zero.
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Fig. 4-5 Separable graph.

graph, the removal of the single vertex v does.t Therefore, we define another
analogous term called vertex connectivity. The vertex connectivity (or simply
connectivity) of a connected graph G is defined as the minimum number of
vertices whose removal from G leaves the remaining graph disconnected.t
Again, the vertex connectivity of a tree is one. The vertex connectivities of the
graphs in Figs. 4-1(a), 4-3, and 4-5 are one, two, and one, respectively. Note
that from the way we have defined it vertex connectivity is meaningful only
for graphs that have three or more vertices and are not complete.

Separable Graph: A connected graph is said to be separable if its vertex
connectivity is one. All other connected graphs are called nonseparable. An
equivalent definition is that a connected graph G is said to be separable if
there exists a subgraph g in G such that g (the complement of g in G) and g
have only one vertex in common. That these two definitions are equivalent
can be easily seen (Problem 4-7). In a separable graph a vertex whose removal
disconnects the graph is called a cut-vertex, a cut-node, or an articulation point.
For example, in Fig. 4-5 the vertex v is a cut-vertex, and in Fig. 4-1(a) vertex
v, is a cut-vertex. It can be shown (Problem 4-18) that in a tree every vertex
with degree greater than one is a cut-vertex. Moreover:

THEOREM 4-7

A vertex v in a connected graph G is a cut-vertex if and only if there exist two
vertices x and y in G such that every path between x and y passes through v.

The proof of the theorem is quite easy and is left as an exercise (Problem
4-17). The implication of the theorem is very significant. It states that v is a
crucial vertex in the sense that any communication between x and y (if G re-
presented a communication network) must “pass through” v.

tRecall that removal of a vertex implies the removal of all the edges incident on that
vertex, because without both the end vertices an edge does not exist. On the other hand,
when we delete or remove an edge from a graph, the end vertices of the edge are still left
in the graph.

1See the footnote on p. 75.
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Fig. 4-6 Graph with 8 vertices and 16
edges.

An Application: Suppose we are given n stations that are to be connected
by means of e lines (telephone lines, bridges, railroads, tunnels, or highways)
where e > n — 1. What is the best way of connecting? By “best” we mean
that the network should be as invulnerable to destruction of individual sta-
tions and individual lines as possible. In other words, construct a graph with
n vertices and e edges that has the maximum possible edge connectivity and
vertex connectivity.

For example, the graph in Fig. 4-5 has n = 8, ¢ = 16, and has vertex
connectivity of one and edge connectivity of three. Another graph with the
same number of vertices and edges (8 and 16, respectively) can be drawn as
shown in Fig. 4-6.

It can easily be seen that the edge connectivity as well as the vertex con-
nectivity of this graph is four. Consequently, even after any three stations are
bombed, or any three lines destroyed, the remaining stations can still con-
tinue to “communicate” with each other. Thus the network of Fig. 4-6 is
better connected than that of Fig. 4-5 (although both consist of the same
number of lines—16).

The next question is what is the highest vertex and edge connectivity we
can achieve for a given n and e¢? The following theorems constitute the
answer.

THEOREM 4-8

The edge connectivity of a graph G cannot exceed the degree of the vertex with
the smallest degree in G.

Proof: Let vertex v; be the vertex with the smallest degree in G. Let d(v;) be
the degree of v;. Vertex v; can be separated from G by removing the d(v;) edges
incident on vertex »;. Hence the theorem. |}

THEOREM 4-9

The vertex connectivity of any graph G can never exceed the edge connectivity
of G.

Proof: Let o denote the edge connectivity of G. Therefore, there exists a cut-
set S in G with o edges. Let S partition the vertices of G into subsets V,; and V.
By removing at most & vertices from ¥, (or V) on which the edges in S are incident,
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we can effect the removal of S (together with all other edges incident on these
vertices) from G. Hence the theorem. [l

COROLLARY

Every cut-set in a nonseparable graph with more than two vertices contains at
least two edges.

THEOREM 4-10

The maximum vertex connectivity one can achieve with a graph G of »n vertices
and e edges (¢ = n — 1) is the integral part of the number 2¢/n; that is, | 2¢/n |.

Proof: Every edge in G contributes two degrees. The total (2¢ degrees) is divided
among » vertices. Therefore, there must be at least one vertex in G whose degree
is equal to or less than the number 2¢/n. The vertex connectivity of G cannot exceed
this number, in light of Theorems 4-8 and 4-9.

To show that this value can actually be achieved, one can first construct an
n-vertex regular graph of degree | 2¢/n | and then add the remaining e — (n/2)-| 2e/n |
edges arbitrarily. The completion of the proof is left as an exercise. W

The results of Theorems 4-8, 4-9, and 4-10 can be summarized as follows:

vertex connectivity << edge connectivity << %lf’

and

maximum vertex connectivity possible = {%J

Thus, for a graph with 8 vertices and 16 edges (Figs. 4-5 and 4-6), for example,
we can achieve a vertex connectivity (and therefore edge connectivity) as
high as four (= 2-16/8).

A graph G is said to be k-connected if the vertex connectivity of G is k;
therefore, a I-connected graph is the same as a separable graph.

THEOREM 4-11

A connected graph G is k-connected if and only if every pair of vertices in G is
joined by k or more paths that do not intersect,t and at least one pair of vertices
is joined by exactly k nonintersecting paths.

THEOREM 4-12

The edge connectivity of a graph G is k if and only if every pair of vertices in
G is joined by k or more edge-disjoint paths (i.e., paths that may intersect, but have
no edges in common), and at least one pair of vertices is joined by exactly k edge-
disjoint paths.

t+Paths with no common vertices, except the two terminal vertices, are called noninter-
secting paths or vertex-disjoint paths.
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The reader is referred to Chapter S of [1-5] for the proofs of Theorems
4-11 and 4-12. Note that our definition of k-connectedness is slightly differ-
ent from the one given in [1-5]. A special result of Theorem 4-11 is that a
graph G is nonseparable if and only if any pair of vertices in G can be placed
in a circuit (Problem 4-13).

The reader is encouraged to verify these theorems by enumerating all
edge-disjoint and vertex-disjoint paths between each of the 15 pairs of ver-
tices in Fig. 4-3.

4-6. NETWORK FLOWS

In a network of telephone lines, highways, railroads, pipelines of oil (or
gas or water), and so on, it is important to know the maximum rate of flow
that is possible from one station to another in the network. This type of net-
work is represented by a weighted connected graph in which the vertices
are the stations and the edges are lines through which the given commodity
(oil, gas, water, number of messages, number of cars, etc.) flows. The weight,
a real positive number, associated with each edge represents the capacity of
the line, that is, the maximum amount of flow possible per unit of time. The
graph in Fig. 4-7, for example, represents a flow network consisting of 12
stations and 3! lines. The capacity of each of these lines is also indicated in
the figure.

It is assumed that at each intermediate vertex the total rate of commodity
entering is equal to the rate leaving. In other words, there is no accumulation
or generation of the commodity at any vertex along the way. Furthermore,
the flow through a vertex is limited only by the capacities of the edges inci-
dent on it. In other words, the vertex itself can handle as much flow as allowed
through the edges. Finally, the lines are lossless.

Fig. 4-7 Graph of a flow network.
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In such a flow problem the questions to be answered are

1. What is the maximum flow possible through the network between a
specified pair of vertices—say, from B to M in Fig. 4-7?

2. How do we achieve this flow (i.e., determine the actual flow through
each edge when the maximum flow exists) ?

Theorem 4-13, perhaps the most important result in the theory of trans-
port networks, answers the first question. The second question is answered
implicitly by a constructive proof of the theorem. To facilitate the statement
and proof of the theorem, let us define a few terms.

A cut-set with respect to a pair of vertices a and b in a connected graph G
puts a and b into two different components (i.e., separates vertices a and b).
For instance, in Fig. 4-3 cut-set {d, e, f} is a cut-set with respect to v, and v,.
The set {f, g, 4} is also a cut-set with respect to v, and vs. But the cut-set
{1, g, h} is not a cut-set with respect to v, and vs. The capacity of cut-set S in
a weighted connected graph G (in which the weight of each edge represents
its flow capacity) is defined as the sum of the weights of all the edges in S.

THEOREM 4-13

The maximum flow possible between two vertices a and b in a network is equal
to the minimum of the capacities of all cut-sets with respect to a and b.

Proof: Consider any cut-set S with respect to vertices a and b in G. In the sub-
graph G — S (the subgraph left after removing S from G) there is no path between
a and b. Therefore, every path in G between a and b must contain at least one edge
of S. Thus every flow from a to b (or from b to a) must pass through one or more
edges of S. Hence the total flow rate between these two vertices cannot exceed the
capacity of S. Since this holds for all cut-sets with respect to a and b, the flow rate
cannot exceed the minimum of their capacities. [

To show that this flow can actually be achieved is somewhat involved. It
requires some concepts that are to be introduced later. The complete proof
will therefore be deferred till Chapter 14, where flow problems will be treated
in much greater detail.

4-7. 1-ISOMORPHISM

A separable graph consists of two or more nonseparable subgraphs. Each
of the largest nonseparable subgraphs is called a block. (Some authors use the
term component, but to avoid confusion with components of a disconnected
graph, we shall use the term block.) The graph in Fig. 4-5 has two blocks. The
graph in Fig. 4-8 has five blocks (and three cut-vertices a, b, and c¢); each block
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Fig. 4-8 Separable graph with three cut-vertices and five blocks.

Y
a; b,
— 9o
a, ay by a0

Fig. 4-9 Disconnected graph 1-isomorphic to Fig. 4-8.

is shown enclosed by a broken line. Note that a nonseparable connected
graph consists of just one block.

Visually compare the disconnected graph in Fig. 4-9 with the one in Fig.
4-8. These two graphs are certainly not isomorphic (they do not have the same
number of vertices), but they are related by the fact that the blocks of the
graph in Fig. 4-8 are isomorphic to the components of the graph in Fig. 4-9.
Such graphs are said to be /-isomorphic. More formally:

Two graphs G, and G, are said to be I-isomorphic if they become isomor-
phic to each other under repeated application of the following operation.

Operation 1: “Split” a cut-vertex into two vertices to produce two disjoint

subgraphs.
From this definition it is apparent that two nonseparable graphs are 1-
isomorphic if and only if they are isomorphic.

THEOREM 4-14

If G, and G, are two 1-isomorphic graphs, the rank of G, equals the rank of
G, and the nullity of G, equals the nullity of G,.

Proof: Under operation 1, whenever a cut-vertex in a graph G is “split” into
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two vertices, the number of components in G increases by one. Therefore, the rank
of G which is

number of vertices in G — number of components in G
remains invariant under operation 1.

Also, since no edges are destroyed or new edges created by operation 1, two
1-isomorphic graphs have the same number of edges. Two graphs with equal rank
and with equal numbers of edges must have the same nullity, because

nullity — number of edges — rank. |}

What if we join two components of Fig. 4-9 by “gluing” together two
vertices (say vertex x to y)? We obtain the graph shown in Fig. 4-10.

Clearly, the graph in Fig. 4-10 is 1-isomorphic to the graph in Fig. 4-9.
Since the blocks of the graph in Fig. 4-10 are isomorphic to the blocks of the
graph in Fig. 4-8, these two graphs are also l-isomorphic. Thus the three
graphs in Figs. 4-8, 4-9, and 4-10 are 1-isomorphic to one another.

Fig. 4-10 Graph 1-isomorphic to Figs. 4-8 and 4-9.

4-8. 2-ISOMORPHISM

In Section 4-7 we generalized the concept of isomorphism by introducing
1-isomorphism. A graph G, was 1-isomorphic to graph G, if the blocks of G,
were isomorphic to the blocks of G,. Since a nonseparable graph is just one
block, 1-isomorphism for nonseparable graphs is the same as isomorphism.
However, for separable graphs (i.e., graphs with vertex connectivity of one),
l-isomorphism is different from isomorphism. Graphs that are isomorphic
are also l-isomorphic, but 1-isomorphic graphs may not be isomorphic. This
generalized isomorphism is very useful in the study of separable graphs.
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We can generalize this concept further to broaden its scope for 2-connect-
ed graphs (i.e., graphs with vertex connectivity of two), as follows:

In a 2-connected graph G let vertices x and y be a pair of vertices whose
removal from G will leave the remaining graph disconnected. In other words,
G consists of a subgraph g, and its complement g, such that g, and g, have
exactly two vertices, x and y, in common. Suppose that we perform the fol-
lowing operation 2 on G (after which, of course, G no longer remains the
original graph).

Operation 2: “Split” the vertex x into x, and x, and the vertex y into y,
and y, such that G is splitinto g, and g,. Let vertices x, and y, go with g, and
x, and y, with g,. Now rejoin the graphs g, and g, by merging x, with y, and
x, with y,. (Clearly, edges whose end vertices were x and y in G could have
gone with g, or g,, without affecting the final graph.)

Two graphs are said to be 2-isomorphic if they become isomorphic after
undergoing operation 1 (in Section 4-7) or operation 2, or both operations
any number of times. For example, Fig. 4-11 shows how the two graphs in
Figs. 4-11(a) and (d) are 2-isomorphic. Note that in (a) the degree of vertex
x 1s four, but in (d) no vertex is of degree four.

From the definition it follows immediately that isomorphic graphs are
always l-isomorphic, and l-isomorphic graphs are always 2-isomorphic.
But 2-isomorphic graphs are not necessarily 1-isomorphic, and 1-isomorphic

x xX; X,
*
g
g
*
y NN
(a) (b)
N X%
8
g
[
Xl y2

(¢) (d)

Fig. 4-11 2-isomorphic graphs (a) and (d).
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graphs are not necessarily isomorphic. However, for graphs with connectivity
three or more, isomorphism, I-isomorphism, and 2-isomorphism are syn-
onymous.

It is clear that no edges or vertices are created or destroyed under opera-
tion 2. Therefore, the rank and nullity of a graph remain unchanged under
operation 2. And as shown in Section 4-7, the rank or nullity of a graph does
not change under operation 1. Therefore, 2-isomorphic graphs are equal in
rank and equal in nullity. The fact that the rank r and nullity g are not enough
to specify a graph within 2-isomorphism can easily be shown by constructing
a counterexample (Problem 4-23).

Circuit Correspondence: Two graphs G, and G, are said to have a circuit
correspondence if they meet the following condition: There is a one-to-one
correspondence between the edges of G, and G, and a one-to-one correspond-
ence between the circuits of G, and G,, such that a circuit in G, formed by
certain edges of G, has a corresponding circuit in G, formed by the corre-
sponding edges of G,, and vice versa. Isomorphic graphs, obviously, have
circuit correspondence.

Since in a separable graph G every circuit is confined to a particular
block (Problem 4-15), every circuit in G retains its e€dges as G undergoes
operation I (in Section 4-7). Hence I-isomorphic graphs have circuit corre-
pondence.

Similarly, let us consider what happens to a circuit in a graph G when it
undergoes operation 2, as defined in this section. A circuit I" in G will fall in
one of three categories:

1. T is made of edges all in g,, or
2. T is made of edges all in g,, or

3. T is made of edges from both g, and g,, and in that case I" must include
both vertices x and y.

In cases 1 and 2, T is unaffected by operation 2. In case 3, I' still has the
original edges, except that the path between vertices x and y in g,, which
constituted a part of T', is “flipped around.” Thus every circuit in a graph
undergoing operation 2 retains its original edges. Therefore, 2-isomorphic
graphs also have circuit correspondence.

Theorem 4-15, which is considered the most important result for 2-isomor-
phic graphs, is due to H. Whitney.

THEOREM 4-15
Two graphs are 2-isomorphic if and only if they have circuit correspondence.

Proof: The “only if” part has already been shown in the argument preceding
the theorem. The “if” part is more involved, and the reader is referred to Whitney’s
original paper [4-7].
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As we shall observe in subsequent chapters, the ideas of 2-isomorphism
and circuit correspondence play important roles in the theory of contact
networks, electrical networks, and in duality of graphs.

SUMMARY

Our main concern in this chapter was with answering the following ques-
tion about a connected graph: Which part of a connected graph, when re-
moved, breaks the graph apart? Clearly, the answer to this question does
specify a graph in many aspects and tells a great deal about it. Some of these
properties are of considerable significance both in theory and applications of
graphs.

In pursuit of the answer to the above question, we came across the con-
cepts of cut-sets, cut-vertices, connectivity, and so on. Many of the theorems
showed relationships between these characteristics of a graph.

In contrast to a spanning tree (which keeps the vertices together), a cut-
set separates the vertices. Consequently, there was bound to be a close re-
lationship between a spanning tree and a cut-set. Some of the theorems (and
the problems at the end of this chapter) describe this relationship between
spanning trees and cut-sets.

In terms of the minimum number of vertices whose removal disconnects
a graph, all graphs can be classified according to Fig. 4-12.

All graphs
Connected Disconnected
m=1 m=0
Separable Nonseparable
m=1 . mz=2
2-connected m-connected
m=2 mz=3

(m is the vertex-connectivity)

Fig. 4-12 Classification of graphs according to their connectivity.
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A very important and practical result of this chapter was the max-flow
min-cut theorem (Theorem 4-13).
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PROBLEMS

4-1. Pick an arbitrary spanning tree in the graph given in Fig.4-6. List all seven (because
n — 1 = 7) fundamental cut-sets with respect to this tree.

4-2. By taking the ring sum of the seven fundamental cut-sets obtained in Problem 4-1,
list all other cut-sets of the graph.

4-3.  List all cut-sets with respect to the vertex pair vz, v3 in the graph in Fig. 4-1(a).

4-4. Show that the edge connectivity and vertex connectivity of the graphs in Fig. 2-2
are each equal to three.

4-5. What is the edge connectivity of the complete graph of n vertices?

4-6. Prove that in a connected graph G the complement of a cut-set in G does not con-
tain a spanning tree and the complement of a spanning tree (i.e., chord set) does
not contain a cut-set.

4-7. Show that the two definitions of separability in Section 4-5 are equivalent.

4-8. Prove that in a nonseparable graph G the set of edges incident on each vertex of G
is a cut-set.
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4-9.

4-10.

4-11.

4-12.

4-13.

4-14.

4-15.

4-16.

4-17.
4-18.
4-19.

4-20.

4-21.
4-22.

4-23.

4-24.

4-25.

4-26.

4-27.

4-28.

Why is the result of Problem 4-8 not applicable to separable graphs also? Explain.

Prove that in a connected graph G a vertex v is a cut-vertex if and only if there
exist two (or more) edges x and y incident on » such that no circuit in G includes
both x and y.

Prove that every connected graph with three or more vertices has at least two
vertices which are not cut-vertices.

Prove that a nonseparable graph has a nullity # = 1 if and only if the graph is a
circuit,

Show that a graph G is nonseparable if and only if every vertex pair in G can be
placed in some circuit in G.

Show that a simple graph is nonseparable if and only if for any two given arbitrary
edges a circuit can always be found that will include these two edges.

How can you utilize the result of Problem 4-13 to obtain an algorithm for iden-
tifying every block of a large separable graph?

What is a necessary and sufficient condition that any » — 1 cut-sets in Problem 4-8
constitute a set of fundamental cut-sets in G?

Prove Theorem 4-7.
Prove that in a tree every vertex of degree greater than one is a cut-vertex.

Show that a graph with » vertices and with vertex connectivity & must have at
least kn/2 edges. (A special case of this result is that the degree of every vertex in a
nonseparable graph is at least two.)

Is every regular graph of degree d (d = 3) nonseparable? If not, give a simple regular
graph of degree three that is separable.

Complete the proof of Theorem 4-10.

In a connected graph G, let Q be a set of edges with the following properties:

(a) Q has an even number (zero included) of edges in common with every cut-set
of G.

(b) There is no proper subset of @ that satisfies property (a).

Prove that Q is a circuit.

Construct a graph G with the following properties: Edge connectivity of G = 4,
vertex connectivity of G = 3, and degree of every vertex of G = 5.

Show (by drawing them) that two graphs with the same rank and the same nullity
need not be 2-isomorphic.

In Fig. 4-7, between vertices 4 and M, pick out a complete set of

(a) Edge-disjoint paths.

(b) Vertex-disjoint paths.

From this, verify Theorems 4-11 and 4-12.

Suppose that a singles tennis tournament is to be arranged among #n players and the
number of matches planned is a fixed number e (wheren — 1 < e < n(n — 1)/2).
For the sake of fairness, how will you make sure that some players do not group
together and isolate an individual (or a small group of players)?

Let us define a new term called edge isomorphism as follows: Two graphs G; and
G, are edge isomorphic if there is a one-to-one correspondence between the edges
of G and G, such that two edges are incident (at a common vertex) in G if and
only if the corresponding edges are also incident in G,. Discuss the properties of
edge isomorphism. Construct an example to prove that edge-isomorphic graphs
may not be isomorphic.

Prove that an Euler graph cannot have a cut-set with an odd number of edges.
(Hint: Use Theorem 1-1.)



5 PLANAR AND DUAL GRAPHS

In Chapters 2, 3, and 4 we studied properties of subgraphs, such as paths,
circuits, spanning trees, and cut-sets, in a given connected graph G. In this
chapter we shall subject the entire graph G to the following important ques-
tion: Is it possible to draw G in a plane without its edges crossing over?

This question of planarity is of great significance from a theoretical point
of view. In addition, planarity and other related concepts are useful in many
practical situations. For instance, in the design of a printed-circuit board, the
electrical engineer must know if he can make the required connections without
an extra layer of insulation. The solution to the puzzle of three utilities, posed
in Chapter 1, requires the knowledge of whether or not the corresponding
graph can be drawn in a plane.

But before we attempt to draw a graph in a plane, let us examine the
meaning of “drawing” a graph.

5-1. COMBINATORIAL VERSUS GEOMETRIC
GRAPHS

As mentioned in Chapter 1, a graph exists as an abstract object, devoid of
any geometric connotation of its ability of being drawn in a three-dimensional
Euclidean space. For example, an abstract graph G, can be defined as

G, =(V,EVY),
where the set V consists of the five objects named a, b, ¢, d, and e, that is,
V={a,b,c,d, e},

88
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and the set E consists of seven objects (none of which is in set V') named 1, 2,
3,4, 5, 6, and 7, that is,

E=1{1,2,3,4,56,7},

and the relationship between the two sets is defined by the mapping ¥, which
consists of

1 —>(a, ¢)
2—>(c, d)
3—>(a,d)

Y = | 4—>(a,b).
5—> (b, d)
6 —> (d, e)

| 7—> (b, e)

Here, the symbol 1 - (a, ¢) says that object 1 from set E is mapped onto the
(unordered) pair (a, c¢) of objects from set V.

Now it so happens that this combinatorial abstract object G, can also be
represented by means of a geometric figure. In fact, the sketch in Fig. 2-13 is
one such geometric representation of this graph. Moreover, it is also true that
any graph can be represented by means of such a configuration in three-
dimensional Euclidean space.

It is important to realize that what is sketched in Fig. 2-13 is merely one
(out of infinitely many) representation of the graph G, and not the graph G,
itself. We could have, for instance, twisted some of the edges or could have
placed e within the triangle a, d, b and thereby obtained a different figure
representing G,. However, when there is no chance of confusion, a pictorial
representation of the graph has been and will be regarded as the graph
itself.

This convenient slurring over 1s done deliberately for the sake of simplicity
and clarity. Learning graph theory for the first time without any diagrams
would be extremely difficult and little fun.t

Unlike in the last four chapters, in this chapter it will often be necessary to
make a distinction between the abstract (or combinatorial) graph and a
geometric representation of a graph.

tAt this point I cannot resist quoting the following comment by Hadamard: “Des-
cartes distrusts that intervention of imagination, and wishes to eliminate it completely
from science.... More recently, another rigorous treatment of ... geometry ... freed
from any appeal to intuition, has been developed ... by the celebrated mathematician
Hilbert. Logically, every intervention of geometrical sense is eliminated. But is it the same
from the psychological point of view? Certainly not. ... Diagrams appear at practically
every page (of Hilbert’s book).”
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5-2. PLANAR GRAPHS

A graph G is said to be planar if there exists some geometric representation
of G which can be drawn on a plane such that no two of its edges intersect.t
A graph that cannot be drawn on a plane without a crossover between its
edges is called nonplanar.

A drawing of a geometric representation of a graph on any surface such
that no edges intersect is called embedding. Thus, to declare that a graph G is
nonplanar, we have to show that of all possible geometric representations of
G none can be embedded in a plane. Equivalently, a geometric graph G is
planar if there exists a graph isomorphic to G that is embedded in a plane.
Otherwise, G is nonplanar. An embedding of a planar graph G on a plane is
called a plane representation of G.

For instance, consider the graph represented by Fig. 1-3. The geometric
representation shown in Fig. 1-3 clearly is not embedded in a plane, because
the edges e and f are intersecting. But if we redraw edge f outside the quadri-
lateral, leaving the other edges unchanged, we have embedded the new
geometric graph in the plane, thus showing that the graph which is being
represented by Fig. 1-3 is planar. As another example, the two isomorphic
diagrams in Fig. 2-2 are different geometric representations of one and the
same graph. One of the diagrams is a plane representation; the other one is
not. The graph, of course, is planar. On the other hand, you will not be able
to draw any of the three configurations in Fig. 2-3 on a plane without edges
intersecting. The reason is that the graph which these three different diagrams
in Fig. 2-3 represent is nonplanar.

A natural question now is: How can we tell if a graph G [which may be
given by an abstract notation G = (V, E, ¥) or by one of its geometric
representations] is planar or nonplanar? To answer this question, let us first
discuss two specific nonplanar graphs which are of fundamental importance.
These are called Kuratowski’s graphs, after the Polish mathematician Kasimir
Kuratowski, who discovered their unique property.

5-3. KURATOWSKI'S TWO GRAPHS

THEOREM 5-1

The complete graph of five vertices is nonplanar.

Proof: Let the five vertices in the complete graph be named v,, v,, v3, v4, and
vs. A complete graph, as you may recall, is a simple graph in which every vertex

is joined to every other vertex by means of an edge. This being the case, we must

tNote that the “meeting” of edges at a vertex is not considered an intersection.
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(a) (b)

U3 v3

(c) (d)

(e)
Fig. 5-1 Building up of the five-vertex complete graph.

have a circuit going from v; to v, to v; to v, to vs to v;—that is, a pentagon.
See Fig. 5-1(a). This pentagon must divide the plane of the paper into two regions,
one inside and the other outside (Jordan curve theorem).

Since vertex v, is to be connected to v; by means of an edge, this edge may be
drawn inside or outside the pentagon (without intersecting the five edges drawn
previously). Suppose that we choose to draw a line from v, to v; inside the pen-
tagon. See Fig. 5-1(b). (If we choose outside, we end up with the same argument.)
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Now we have to draw an edge from v, to v, and another one from v, to vs. Since
neither of these edges can be drawn inside the pentagon without crossing over the
edge already drawn, we draw both these edges outside the pentagon. See Fig. 5-1(¢c).
The edge connecting v; and vs cannot be drawn outside the pentagon without
crossing the edge between v, and v»,. Therefore, v; and s have to be connected
with an edge inside the pentagon. See Fig. 5-1(d).

Now we have yet to draw an edge between v; and v,. This edge cannot be
placed inside or outside the pentagon without a crossover. Thus the graph cannot
be embedded in a plane. See Fig. 5-1(c).

Some readers may find this proof somewhat unsatisfactory because it
depends so heavily on visual intuition. Do not despair; we shall provide you
with an algebraic nonvisual proof in the next section.

A complete graph with five vertices is the first of the two graphs of
Kuratowski. The second graph of Kuratowski is a regulart connected graph
with six vertices and nine edges, shown in its two common geometric rep-
resentations in Figs. 5-2(a) and (b), where it is fairly easy to see that the
graphs are isomorphic.

Employing visual geometric arguments similar to those used in proving
Theorem 5-1, it can be shown that the second graph of Kuratowski is also
nonplanar. The proof of Theorem 5-2 is, therefore, left as an exercise
(Problem 5-1).

(a)

(b)

Fig. 5-2 Kuratowski’s second graph.

THEOREM 5-2

Kuratowski’s second graph is also nonplanar.

You may have noticed several properties common to the two graphs of
Kuratowski. These are

1. Both are regular graphs.

tRecall that a graph in which all vertices are of equal degree is called a regular graph.
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2. Both are nonplanar.
3. Removal of one edge or a vertex makes each a planar graph.

4. Kuratowskr’s first graph i1s the nonplanar graph with the smallest
number of vertices, and Kuratowski’s second graph is the nonplanar
graph with the smallest number of edges. Thus both are the simplest
nonplanar graphs.

In the literature, Kuratowski’s first graph is usually denoted by K and the
second graph by K; ;—letter K being for Kuratowski.

5-4. DIFFERENT REPRESENTATIONS OF A
PLANAR GRAPH

In following the proof of Theorem 5-1, it may have appeared that one’s
ability to draw a planar graph in a plane depended on his ability to draw many
crooked lines through devious routes. This is not the case. The following
important and somewhat surprising result, due to Fary, tells us that there is
no need to bend edges in drawing a planar graph to avoid edge intersections.

THEOREM 5-3

Any simple planar graph can be embedded in a plane such that every edge is
drawn as a straight line segment.

Proof: The proof is involved and does not contribute much to the understanding
of planarity. The interested reader is, therefore, referred to pages 74-77 in [1-2]
or to the original paper of Fary [5-4]. As an illustration, the graph in Fig. 5-1(d)
can be redrawn using straight line segments to look like Fig. 5-3. In this theorem,
it is necessary for the graph to be simple because a self-loop or one of two parallel
edges cannot be drawn by a straight line segment. [}

Region: A plane representation of a graph divides the plane into regions
(also called windows, faces, or meshes), as shown in Fig. 5-4. A region i1s

Y

Fig. 5-3 Straight-line representation of
U3 Us  the graph in Fig. 5-1(d).
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Fig.5-4 Plane representation (the num-
bers stand for regions).

characterized by the set of edges (or the set of vertices) forming its boundary.
Note that a region is not defined in a nonplanar graph or even in a planar
graph not embedded in a plane. For example, the geometric graph in Fig. 1-3
does not have regions. Thus a region is a property of the specific plane
representation of a graph and not of an abstract graph per se.

Infinite Region: The portion of the plane lying outside a graph embedded
in a plane, such as region 4 in Fig. 5-4, is infinite in its extent. Such a region is
called the infinite, unbounded, outer, or exterior region for that particular plane
representation. Like other regions, the infinite region is also characterized by
a set of edges (or vertices). Clearly, by changing the embedding of a given
planar graph, we can change the infinite region. For instance, Figs. 5-1(d) and
5-3 are two different embeddings of the same graph. The finite region v, v, v,
in Fig. 5-1(d) becomes the infinite region in Fig. 5-3. In fact, we shall shortly
show that any region can be made the infinite region by proper embedding.

Embedding on a Sphere: To eliminate the distinction between finite and
infinite regions, a planar graph is often embedded in the surface of a sphere.
It is accomplished by stereographic projection of a sphere on a plane. Put
the sphere on the plane and call the point of contact SP (south pole). At point
SP, draw a straight line perpendicular to the plane, and let the point where
this line intersects the surface of the sphere be called NP (north pole). See
Fig. 5-5.

Now, corresponding to any point p on the plane, there exists a unique
point p’ on the sphere and vice versa, where p’ is the point at which the
straight line from point p to point NP intersects the surface of the sphere.
Thus there is a one-to-one correspondence between the points of the sphere
and the finite points on the plane, and points at infinity in the plane corre-
spond to the point NP on the sphere.

From this construction, it is clear that any graph that can be embedded in
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Fig. 5-5 Stereographic projection.

a plane (i.e., drawn on a plane such that its edges do not intersect) can also be
embedded in the surface of the sphere, and vice versa. Hence

THEOREM 5-4

A graph can be embedded in the surface of a sphere if and only if it can be
embedded in a plane.

A planar graph embedded in the surface of a sphere divides the surface
into different regions. Each region on the sphere is finite, the infinite region on
the plane having been mapped onto the region containing the point NP. Now
it is clear that by suitably rotating the sphere we can make any specified
region map onto the infinite region on the plane. From this we obtain

THEOREM 5-5

A planar graph may be embedded in a plane such that any specified region
(i.e., specified by the edges forming it) can be made the infinite region.

Thinking in terms of the regions on the sphere, we see that there is no real
difference between the infinite region and the finite regions on the plane.
Therefore, when we talk of the regions in a plane regresentation of a graph,
we include the infinite region. Also, since there is no essential difference
between an embedding of a planar graph on a plane or on a sphere (a plane
may be regarded as the surface of a sphere of infinitely large radius), the term
“plane representation” of a graph is often used to include spherical as well as
planar embedding.

Euler’s Formula: Since a planar graph may have different plane represen-
tations, we may ask if the number of regions resulting from each embedding
is the same. The answer is yes. Theorem 5-6, known as Euler’s formula, gives
the number of regions in any planar graph.
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THEOREM 5-6

A connected planar graph with n vertices and e edges has e — n + 2 regions.

Proof: It will suffice to prove the theorem for a simple graph, because adding
a self-loop or a parallel edge simply adds one region to the graph and simultane-
ously increases the value of e by one. We can also disregard (i.e., remove) all edges
that do not form boundaries of any region. Three such edges are shown in Fig. 5-4.
Addition (or removal) of any such edge increases (or decreases) e by one and in-
creases (or decreases) n by one, keeping the quantity e — » unaltered.

Since any simple planar graph can have a plane representation such that each
edge is a straight line (Theorem 5-3), any planar graph can be drawn such that
each region is a polygon (a polygonal net). Let the polygonal net representing the
given graph consist of fregions or faces, and let &, be the number of p-sided regions.
Since each edge is on the boundary of exactly two regions,

3ky + doky + Sks + o + 1ok, =2-e, (5-1)

where k&, is the number of polygons, with maximum edges.
Also,

k3+k4+k5+""*‘kr:.f- (5'2)
The sum of all angles subtended at each vertex in the polygonal net is
27h. (5-3)

Recalling that the sum of all interior angles of a p-sided polygon is m(p — 2), and
the sum of the exterior angles is m#(p + 2), let us compute the expression in (5-3)
as the grand sum of all interior angles of f — 1 finite regions plus the sum of the
exterior angles of the polygon defining the infinite region. This sum is

A3 — 2) ks + 1@ —2)ky + -+ + R0 —2)-k, + 4m
= n(2e — 2f) + 4m. (5-4)
Equating (5-4) to (5-3), we get

2n(e — f) + 4n = 27n,
or e—f+2=n

Therefore, the number of regions is

f=e—n+2. B
COROLLARY

In any simple, connected planar graph with f regions, n vertices, and e edges
(e > 2), the following inequalities must hold:

=3, (5-5)

e < 3n — 6. (5-6)
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Proof: Since each region is bounded by at least three edges and each edge
belongs to exactly two regions,

or e > —=f.
Substituting for f from Euler’s formula in inequality (5-5),

e2—3—(e—n+2)
or e<3n—6. R

Inequality (5-6) is often useful in finding out if a graph is nonplanar. For
example, in the case of K, the complete graph of five vertices [Fig. 5-1(e)],

n=>=3, e = 10, 3In—6=9 <e.

Thus the graph violates inequality (5-6), and hence it is not planar.

Incidentally, this is an alternative and independent proof of the non-
planarity of Kuratowski’s first graph, as promised in Section 5-3.

The reader must be warned that inequality (5-6) is only a necessary, but
not a sufficient, condition for the planarity of a graph. In other words,
although every simple planar graph must satisfy (5-6), the mere satisfaction
of this inequality does not guarantee the planarity of a graph. For example,
Kuratowski’s second graph, K ;, satisfies (5-6), because

e =29,
3n—6=3.6—6=12.
Yet the graph is nonplanar.
To prove the nonplanarity of Kuratowski’s second graph, we make use of

the additional fact that no region in this graph can be bounded with fewer
than four edges. Hence, if this graph were planar, we would have

2e > 4f,
and, substituting for f from Euler’s formula,

2e > 4(e — n + 2),
or 2:9>409 — 6 4 2),

or 18 > 20, a contradiction.

Hence the graph cannot be planar.

Plane Representation and Connectivity: In a disconnected graph the
embedding of each component can be considered independently. Therefore,
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it is clear that a disconnected graph is planar if and only if each of its com-
ponents is planar. Similarly, in a separable (or 1-connected) graph the
embedding of each block (i.e., maximal nonseparable subgraph) can be
considered independently. Hence a separable graph is planar if and only if
each of its blocks is planar.

Therefore, in questions of embedding or planarity, one need consider only
nonseparable graphs.

Does a nonseparable planar graph G have a unique embedding on a
sphere ? Before answering this question, we must define the meaning of unique
embedding. Two embeddings of a planar graph on spheres are not distinct if
the embeddings can be made to coincide by suitably rotating one sphere with
respect to the other and possibly distorting regions (without letting a vertex
cross an edge). If of all possible embeddings on a sphere no two are distinct,
the graph is said to have a unique embedding on a sphere (or a unique plane
representation).

For example, consider two embeddings of the same graph in Fig. 5-6. The
embedding (b) has a region bounded with five edges, but embedding (a) has
no region with five edges. Thus, rotating the two spheres on which (a) and (b)
are embedded will not make them coincide. Hence the two embeddings are
distinct, and the graph has no unique plane representation.

On the other hand, the embeddings in Figs. 5-1(d) and 5-3, when con-
sidered on a sphere, can be made to coincide. (Remember that edges can be
bent, and in a spherical embedding there is no infinite region.) Theorem 5-7,
due to Whitney, tells us exactly when a graph is uniquely embeddable in a
sphere. For a proof of the theorem, the reader is referred to [5-9].

THEOREM 5-7

The spherical embedding of every planar 3-connected graph is unique.

This theorem plays a very important role in determining if a graph is

€7

€s

€4 63 el

82 (.’2

(a) (b)

Fig. 5-6 Two distinct plane representations of the same graph.
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planar or not. The theorem states that a 3-connected graph, if it can be
embedded at all, can be embedded in only one way.

5-5. DETECTION OF PLANARITY

How to tell if a given graph G is planar or nonplanar is an important
problem, and “find out by drawing it” is obviously not a good answer. We
must have some simple and efficient criterion. Toward that goal, we take the
following simplifying steps:

Elementary Reduction

Step 1: Since a disconnected graph is planar if and only if each of its
components is planar, we need consider only one component at a time. Also,
a separable graph is planar if and only if each of its blocks is planar. There-
fore, for the given arbitrary graph G, determine the set

G=1{G,,G,,...,Gl

where each G, is a nonseparable block of G. Then we have to test each G, for
planarity.

Step 2: Since addition or removal of self-loops does not affect planarity,
remove all self-loops.

Step 3: Since parallel edges also do not affect planarity, eliminate edges in
parallel by removing all but one edge between every pair of vertices.

Step 4: Elimination of a vertex of degree two by merging two edges in
seriest does not affect planarity. Therefore, eliminate all edges in series.

Repeated application of steps 3 and 4 will usually reduce a graph drasti-
cally. For example, Fig. 5-7 illustrates the series-parallel reduction of the
graph of Fig. 5-6(b).

Let the nonseparable connected graph G, be reduced to a new graph H,
after the repeated application of steps 3 and 4. What will graph H, look like?
Theorem 5-8 has the answer.

THEOREM 5-8
Graph H; is

1. A single edge, or
2. A complete graph of four vertices, or
3. A nonseparable, simple graph with n > 5and e > 7.

+In a graph, two edges are said to be in series if they have exactly one vertex in common

and if this vertex is of degree two. Edges es and e¢ (and also e; and e,) are in series in
Fig. 5-6.
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Fig. 5-7 Series-parallel reduction of the graph in Fig. 5-6(b).

Proof: The theorem can be proved by considering all connected nonseparable
graphs of six edges or less. The proof is left as an exercise (Problem 5-9).

In Theorem 5-8, all H, falling in categories | or 2 are planar and need not
be checked further.

From now on, therefore, we need to investigate only simple, connected,
nonseparable graphs of at least five vertices and with every vertex of degree three
or more. Next, we can check to see if e << 3n — 6. If this inequality is not
satisfied, the graph H, is nonplanar. If the inequality is satisfied, we have to
test the graph further and, with this, we come to Kuratowski’s theorem
(Theorem 5-9), perhaps the most important result of this chapter.

Homeomorphic Graphs: Two graphs are said to be homeomorphic if one
graph can be obtained from the other by the creation of edges in series (i.e.,
by insertion of vertices of degree two) or by the merger of edges in series. The
three graphs in Fig. 5-8 are homeomorphic to each other, for instance. A
graph G is planar if and only if every graph that is homeomorphic to G is
planar. (This is a restatement of series reduction, step 4 in this section.)

THEOREM 5-9

A necessary and sufficient condition for a graph G to be planar is that G does
not contain either of Kuratowski’s two graphs or any graph homeomorphic to
either of them.
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o—

Fig. 5-8 Three graphs homeomorphic to each other.

Proof: The necessary condition is clear, because a graph G cannot be embedded
in a plane if G has a subgraph that cannot be embedded. That this condition is
also sufficient is surprising, and its proof is involved. Several different proofs of
the theorem have appeared since Kuratowski stated and proved it in 1930. For
a complete proof of the theorem, the reader is referred to Harary [1-5], pages 108—
112, Berge [1-1], pages 211-213, or Busacker and Saaty [1-2], pages 70-73.

Note that it is not necessary for a nonplanar graph to have either of the
Kuratowski graphs as a subgraph, as this theorem is sometimes misstated.
The nonplanar graph may have a subgraph homeomorphic to a Kuratowski
graph. For example, the graph in Fig. 5-9(a) is nonplanar, and yet it does not
have either of the Kuratowski graphs as a subgraph. However, if we remove

A A
c c
B B
a C a C
(a) (b)

B

(c)

Fig.5-9 Nonplanar graph with a subgraph homeomorphic to K3, 3.
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edges (a, x) and (4, C) from this graph, we get a subgraph, as shown in Fig.
5-9(b). This subgraph is homeomorphic (merge two series edges at vertex x) to
the one shown in Fig. 5-9(c). The graph of Fig. 5-9(c) clearly is isomorphic to
K, ;, Kuratowski’s second graph, and this demonstrates the nonplanarity of
the graph in Fig. 5-9(a).

The example just discussed also points out that although Theorem 5-9
(Kuratowski’s theorem) gives an elegant and simple-looking criterion for
planarity of a graph, the theorem is difficult to apply in the actual testing of a
large graph (say, a simple, nonseparable graph of 25 vertices, each of degree
three or more). There have been several alternative characterizations of a
planar graph. One of these characterizations, the existence of a dual graph, is
the subject of the next two sections.

5-6. GEOMETRIC DUAL

Consider the plane representation of a graph in Fig. 5-10(a), with six
regions or faces F,, F,, F,, F,, Fs, and Fg. Let us place six points p, p,, . . .,
Ps, one in each of the regions, as shown in Fig. 5-10(b). Next let us join these
six points according to the following procedure:

(a)

Fig. 5-10 Construction of a dual graph.
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If two regions F, and F, are adjacent (i.e., have a common edge), draw a
line joining points p; and p; that intersects the common edge between F, and
F; exactly once. If there is more than one edge common between F, and F;,
draw one line between points p; and p; for each of the common edges. For an
edge e lying entirely in one region, say F,, draw a self-loop at point p, inter-
secting e exactly once.

By this procedure we obtain a new graph G* [in broken lines in Fig.
5-10(c)] consisting of six vertices, p,, p,, ..., ps and of edges joining these
vertices. Such a graph G* is called a dual (or strictly speaking, a geometric
dual) of G.

Clearly, there is a one-to-one correspondence between the edges of graph
G and its dual G*—one edge of G* intersecting one edge of G. Some simple
observations that can be made about the relationship between a planar graph
G and its dual G* are

1. An edge forming a self-loop in G yields a pendant edgef in G*.
A pendant edge in G yields a self-loop in G*.
Edges that are in series in G produce parallel edges in G*.

Parallel edges in G produce edges in series in G*.

voR W

Remarks 1-4 are the result of the general observation that the number
of edges constituting the boundary of a region F, in G is equal to the
degree of the corresponding vertex p, in G*, and vice versa.

6. Graph G* is also embedded in the plane and is therefore planar.

7. Considering the process of drawing a dual G* from G, it is evident that
G 1s a dual of G* [see Fig. 5-10(c)]. Therefore, instead of calling G*
a dual of G, we usually say that G and G* are dual graphs.

8. If n, e, f, r, and u denote as usual the numbers of vertices, edges,
regions, rank, and nullity of a connected planar graph G, and if n*, e*,
f* r* and u* are the corresponding numbers in dual graph G*, then

n* = f,
e* = e,
f*=n.

Using the above relationship, one can immediately get

r*

= #’
u* =r.
Uniqueness of Dual Graphs: Is a (geometric) dual of a graph unique? In

tAn edge incident on a pendant vertex is called a pendant edge.
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*

€

(a) Dual of 5-6(a) (b) Dual of 5-6(b)

Fig. 5-11 Duals of graphs in Fig. 5-6.

other words, are all duals of a given graph isomorphic? From the method of
constructing a dual, it is reasonable to expect that a planar graph G will have a
unique dual if and only if it has a unique plane representation or unique
embedding on a sphere.

For instance, in Fig. 5-6 the same graph (isomorphic) had two distinct
embeddings, (a) and (b). Consequently, the duals of these isomorphic graphs
are nonisomorphic, as shown in Fig. 5-11.

The graphs in Fig. 5-11, however, are 2-isomorphic. Theorem 5-10, stated
without proof, is a generalization of this example.

THEOREM 5-10

All duals of a planar graph G are 2-isomorphic; and every graph 2-isomorphic
to a dual of G is also a dual of G.

With this qualification in mind, it is quite appropriate to refer to a dual as
the dual of a planar graph.

Since a 3-connected planar graph has a unique embedding on a sphere, its
dual must also be unique. In other words, all duals of a 3-connected graph
are isomorphic.

5-7. COMBINATORIAL DUAL

So far we have defined and discussed duality of planar graphs in a purely
geometric sense. The following provides us with an equivalent definition of
duality independent of geometric notions.

THEOREM 5-11

A necessary and sufficient condition for two planar graphs G, and G, to be
duals of each other is as follows: There is a one-to-one correspondence between
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the edges in G, and the edges in G, such that a set of edges in G; forms a circuit if
and only if the corresponding set in G, forms a cut-set.

Proof: Let us consider a plane representation of a planar graph G. Let us also
draw (geometrically) a dual G* of G. Then consider an arbitrary circuit I' in G.
Clearly, I' will form some closed simple curve in the plane representation of G—
dividing the plane into two areas. (Jordan Curve Theorem). Thus the vertices of
G* are partitioned into two nonempty, mutually exclusive subsets—one inside I"
and the other outside. In other words, the set of edges I'* in G* corresponding to
the set I in G is a cut-set in G*. (No proper subset of I'* will be a cut-set in G*;
why ?). Likewise it is apparent that corresponding to a cut-set S* in G* there is a
unique circuit consisting of the corresponding edge-set S in G such that S is a
circuit. This proves the necessity portion of Theorem 5-11.

To prove the sufficiency, let G be a planar graph and let G’ be a graph for which
there is a one-to-one correspondence between the cut-sets of G and circuits of G’,
and vice versa. Let G* be a dual graph of G. There is a one-to-one correspondence
between the circuits of G” and cut-sets of G, and also between the cut-sets of G and
circuits of G*. Therefore there is a one-to-one correspondence between the circuits
of G’ and G*, implying that G’ and G* are 2-isomorphic (Theorem 4-15). According
to Theorem 5-10, G’ must be a dual of G.

Dual of a Subgraph: Let G be a planar graph and G* be its dual. Let a be
an edge in G, and the corresponding edge in G* be a*. Suppose that we
delete edge a from G and then try to find the dual of G — a. If edge a was on
the boundary of two regions, removal of a would merge these two regions
into one. Thus the dual (G — a)* can be obtained from G* by deleting the
corresponding edge a* and then fusing the two end vertices of a* in G* — a*.
On the other hand, if edge a is not on the boundary, a* forms a self-loop. In
that case G* — a* is the same as (G — a)*. Thus if a graph G has a dual G*,
the dual of any subgraph of G can be obtained by successive application of
this procedure.

Dual of a Homeomorphic Graph: Let G be a planar graph and G* be its
dual. Let a be an edge in G, and the corresponding edge in G* be a*. Suppose
that we create an additional vertex in G by introducing a vertex of degree two
in edge a (i.e., a now becomes two edges in series). How will this addition
affect the dual? It will simply add an edge parallel to a* in G*. Likewise, the
reverse process of merging two edges in series (step 4 in Section 5-5) will
simply eliminate one of the corresponding parallel edges in G*. Thus if a
graph G has a dual G*, the dual of any graph homeomorphic to G can be
obtained from G* by the above procedure.

So far we have been studying duality for planar graphs only. This was
forced upon us because the very definition of duality depended on the graph
being embedded in a plane. However, now that Theorem 5-11 provides us
with an equivalent abstract definition of duality (namely, the correspondence
between circuits and cut-sets), which does not depend on a plane represen-
tation of a graph, we will see if the concept of duality can be extended to
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nonplanar graphs also. In other words, given a nonplanar graph G, can we
find another graph G’ with one-to-one correspondence between their edges
such that every circuit in G corresponds to a unique cut-set in G’, and vice
versa? The answer to this question is no, as shown in the following important
theorem, due to Whitney.

THEOREM 5-12
A graph has a dual if and only if it is planar.

Proof: We need prove just the “only if” part. That is, we have only to prove
that a nonplanar graph does not have a dual. Let G be a nonplanar graph. Then
according to Kuratowski’s theorem, G contains K5 or K3 ; or a graph homeomor-
phic to either of these. We have already seen that a graph G can have a dual only
if every subgraph g of G and every graph homeomorphic to g has a dual. Thus if
we can show that neither K5 nor K3 ; has a dual, we have proved the theorem.
This we shall prove by contradiction as follows:

(a) Suppose that K; ; has a dual D. Observe that the cut-sets in K3 3 corres-
pond to circuits in D and vice versa (Theorem 5-10). Since K3 ; has no cut-set
consisting of two edges, D has no circuit consisting of two edges. That is, D con-
tains no pair of parallel edges. Since every circuit in Kj; 3 is of length four or six,
D has no cut-set with less than four edges. Therefore, the degree of every vertex
in D is at least four. As D has no parallel edges and the degree of every vertex is
at least four, D must have at least five vertices each of degree four or more. That is,
D must have at least (5§ X 4)/2 = 10 edges. This is a contradiction, because K3 3
has nine edges and so must its dual. Thus K; ; cannot have a dual. Likewise,

(b) Suppose that the graph K has a dual H. Note that K5 has (1) 10 edges,
(2) no pair of parallel edges, (3) no cut-set with two edges, and (4) cut-sets with
only four or six edges. Consequently, graph H must have (1) 10 edges, (2) no vertex
with degree less than three, (3) no pair of parallel edges, and (4) circuits of length
four and six only. Now graph H contains a hexagon (a circuit of length six), and
no more than three edges can be added to a hexagon without creating a circuit of
length three or a pair of parallel edges [see Fig. 5-2(b)]. Since both of these are for-
bidden in H and H has 10 edges, there must be at least seven vertices in H. The
degree of each of these vertices is at least three. This leads to H having at least
11 edges. A contradiction. |l

This proof of theorem 5-12 is not the one originally given by Whitney.
Whitney’s proof, though more rigorous, is much more involved. Our proof is
based on one given by Parson [5-7].

There is yet another equivalent combinatorial definition of duality, also
given by Whitney and proved equivalent to the earlier two definitions [5-10].

Two planar graphs G and G* are said to be duals (or combinatorial duals)
of each other if there is a one-to-one correspondence between the edges of G
and G* such that if g is any subgraph of G and 4 is the corresponding subgraph
of G*, then

rank of (G* — h) = rank of G* — nullity of g. (5-7)

This relationship is shown diagrammatically in Fig. 5-12.
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Rank of (G* — h) = Rank of G* — Nullity of g

Fig. 5-12 Combinatorial duals.

As an example, consider the graph in Fig. 5-6(a) and its dual in Fig.
5-11(a). Take the subgraph {e,, e, €4, ¢,} in Fig. 5-6(a) and the corresponding
subgraph {e¥, e¥, e¥, e*} in Fig. 5-11(a).

rank of (G* — {e¥, e¥, e¥, e¥]) = rank of {e¥, e}, e¥} = 2,
rank of G* = 3,
nullity of {e,, es, €4, €,} = 1,

and
2=3—1.

Clearly, this definition is also independent of the geometric connotation.
It is therefore often preferred for proving results in purely algebraic fashion.
However, in deciding whether or not two given graphs are dual the combina-
torial definitions are difficult to use.

The proof of equivalence of combinatorial and geometric duals is quite
involved. The interested reader is referred to the original papers of Whitney
[5-10, 5-12] or to Seshu and Reed [1-13], pages 45-50. Since the geometric and
combinatorial duals are one and the same, we simply refer to them as the
dual, rather than the geometric or combinatorial dual.

Self-Dual Graphs: If a planar graph G is isomorphic to its own dual, it
is called a self-dual graph. It can be easily shown that the four-vertex com-
plete graph is a self-dual graph (Problem 5-20). Self-dual graphs have
interesting properties and pose some unsolved problems.

5-8. MORE ON CRITERIA OF PLANARITY

Theorems 5-9 (Kuratowski’s theorem) and 5-12 (Whitney’s theorem)
provided us with two different and alternative ways of characterizing a planar
graph. The third classic planarity criterion, due to MacLane [5-6], is given
next.

Set of Basic Circuits: A set C of circuits in a graph is said to be a complete
set of basic circuits if (1) every circuit in the graph can be expressed as a rine
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sum of some or all circuits in C, and (ii) no circuit in C can be expressed as
a ring sum of others in C. The significance of complete sets of basic circuits
will be clearer in Chapter 6, in relation to the vector space of a graph. It may,
however, be mentioned here that whereas a set of fundamental circuits (as
defined in Chapter 3 with respect to a spanning tree) always constitutes a
complete set of basic circuits, the converse does not hold for all graphs
(Problem 5-15).

In a planar graph a complete set of basic circuits has an additional pro-
perty, which we will observe next.

In a plane representation of a planar, connected graph G the set of circuits
forming the interior regions constitutes a complete set of basic circuits. For
any circuit I' in G can be expressed as the ring sum of the circuits defining the
regions contained in I'. Observe that every edge appears in at most two of
these basic circuits. Thus for every planar graph G we can find a complete
set of basic circuits such that no edge appears in more than two of these
basic circuits. This result and its converse (proof of which can be found in
[5-6]) lead to another well-known characterization of planar graphs.

THEOREM 5-13

A graph G is planar if and only if there exists a complete set of basic circuits
(i.e., all uy of them, u being the nullity of G) such that no edge appears in more
than two of these circuits.

All three of these classic characterizations suffer from two shortcomings.
First, they are extremely difficult to implement for a large graph. Second, in
case the graph is planar they do not give a plane representation of the graph.

These drawbacks have prompted recent discoveries of several map-
construction methods, where the testing of planarity itself is based on an
attempt to produce a plane representation of the graph. One such method is
given by Tutte [5-9]. Several other construction methods, some of them quite
similar, have been implemented on digital computers [5-2, 5-8]. In most of
these methods, the given graph is first reduced to one or more simple, non-
separable graphs with every vertex of degree three or more and with e << 3n — 6.
Then the construction algorithm is applied such that either one succeeds in
obtaining a planar realization of the graph or the graph is nonplanar. More
will be said on such algorithms in Chapter 11.

Some algorithms are better than others, but all are laborious and time-
consuming. The search for a simple, elegant, and practical characterization of
a planar graph is far from over.

5-9. THICKNESS AND CROSSINGS

Having found that a given graph G is nonplanar, it is natural to ask, what
is the minimum number of planes necessary for embedding G? The least
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number of planar subgraphs whose union is the given graph G is called the
thickness of G. In a printed-circuit board, for instance, the number of
insulation layers necessary is the thickness of the corresponding graph.

By definition, then, the thickness of a planar graph'is one. The thickness
of each of Kuratowski’s graphs is clearly two. The reader can show, by
sketching them, that the thickness of the complete graph of eight vertices is
two, while the thickness of the complete graph of nine vertices is three
(Problem 5-19). Although there are several results available on the thickness
of special types of graphs [1-5, pages 120-121], the thickness of an arbitrary
graph is in general, difficult to determine.

Another question one might ask about a nonplanar graph is: What is the
fewest number of crossings (or intersections) necessary in order to “draw” the
graph in a plane?

The crossing number of a planar graph is, by definition, zero, and of
either of Kuratowski’s graphs, it is one. The crossing numbers of only a few
graphs have been determined. No formula exists to give the crossing number
of an arbitrary graph.

SUMMARY

Can a given graph be placed in a plane without its edges crossing over?
This is clearly a geometric question about the graph—an object that exists in
two different worlds, purely combinatorial and purely geometric. To quote
Harary [1-5], page 106, “one of the most fascinating areas of study ... is the
interplay between considering a graph as a combinatorial object and as a
geometric figure.”

On probing a bit further, we discovered that we needed to investigate only
simple, nonseparable graphs which have no vertex of degree less than three.
Moreover, we found that any graph with the number of edges e > 3n — 6
need not be investigated any further, because such a graph is nonplanar.

Three equivalent, but very different, planarity characterizations, those of
Kuratowski, Whitney, and MacLane, were presented and their significance
and drawbacks discussed. For graphs that are nonplanar, additional relevant
properties, such as thickness and number of crossings, were defined and
discussed. There are many unsolved problems in this field of study. Because of
the current interest in such areas as automatic wiring of complex systems,
technology of printed circuits, and design of large-scale integrated circuits,
these geometrical properties of graphs are of practical importance.

The existence of a dual graph, in addition to being a condition equivalent
to that of planarity, is important in its own right. The underlying structural
relationship between dual graphs becomes very clear in terms of the vector
space of the graph, a subject for the next chapter.
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PROBLEMS

5-1. Using geometric arguments similar to those used in proving Theorem 5-1, prove
that Kuratowski’s second graph is also nonplanar.
5-2. If every region of a simple planar graph (with n vertices and e edges) embedded in
a plane is bounded by k edges, show that
_k(n —2),
k—2
5-3. A simple planar graph to which no edge can be added without destroying its

e
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5-5.

5-6.

5-7.

5-9.

5-10.
5-11.

5-12.

5-13.

5-14.

5-15.

5-16.

5-17.

5-18.
5-19.

5-20.

planarity (while keeping the graph simple, of course) is called a maximal planar
graph. Prove that every region in a maximal planar graph is a triangle.

Prove that a planar graph of n vertices (n = 4) has at least four vertices with degree
five or less. This will also prove that there are no 6-connected planar graphs.
(Hint: Use the result of Problem 5-3.)

A planar graph G is said to be completely regular if the degrees of all vertices of G
are equal and every region is bounded by the same number of edges. The graphs
in Figs. 2-20(a) and 2-21(b) are completely regular, for example. Show that there
are only five possible simple completely regular planar graphs, excluding the trivial
graphs with degree << 2. Sketch them. (Hint: Use Euler’s formula.)

Prove that an infinite pattern formed of a regular polygon repeating itself, such as
those found in mosaics and tiled floors (see infinite graphs in Fig. 1-10), can consist
of only three types of polygons—square, triangular, and hexagonal.

Redraw the graph in Fig. 5-4 such that region 2 becomes the infinite region.

Using Kuratowski’s theorem, show that the graphs in Fig. 2-3 (known as Petersen’s
graph) are nonplanar.

By sketching all (don’t panic, their number is small) simple, nonseparable graphs
with n << 4 and e < 6, prove Theorem 5-8.

Draw the geometric dual of the graph in Fig. 5-4.
Show by actual construction that the geometric dual of the two (2-isomorphic)
graphs in Figs. 4-11(a) and (d) are isomorphic.

Construct an example to demonstrate that G**, the dual of a dual of a graph G,
may not be isomorphic to G, but is 2-isomorphic to it.

Prove that the geometric dual of a self-loop-free nonseparable planar graph is also
nonseparable.

Prove that a self-loop-free planar graph is 2-connected if and only if its dual is also
2-connected.

Give an example of a graph which has at least one complete set of basic circuits
not constituting a set of fundamental circuits (with respect to any spanning tree).

Show that the edges forming a spanning tree in a planar graph G correspond to
the edges forming a set of chords in the dual G*.

Show that a set of fundamental circuits in a planar graph G corresponds to a set
of fundamental cut-sets in its dual G*.

Determine the number of crossings and the thickness of the graph in Fig. 2-3.

Show, by sketching, that the thickness of the eight-vertex complete graph is two,
whereas that of the nine-vertex complete graph is three.

Show that the complete graph of four vertices is self-dual. Give another example
of a self-dual graph.



6 VECTOR SPACES OF A GRAPH

Modern abstract algebra is a powerful tool in the theory as well as in the
applications of graphs. It is essential for a thorough understanding of graphs
and a must for those wishing to do research in the field. Moreover, since
digital computers do not (at least internally) work on pictorial graphs, it is
necessary to represent a graph algebraically and to manipulate it algebrai-
cally, if one wishes to enlist the aid of a computer in solving graph-theory
problems.

6-1. SETS WITH ONE OPERATION

Set: A set is a collection of objects (called the elements of the set).

Note that there is no specification on the nature of the elements or the
number of elements. Nor do the elements have anything to do with each other,
except belong to the same set. Braces are used to enclose the elements of a
set. For instance, a set S consisting of five objects a, b, ¢, x, and y may be
written as S = {a, b, ¢, x, y}. Since the order in which these elements appear
is of no significance, we could have written the same set as S = {x, b, qa, y, ¢},
for instance. The symbol a € S is used to indicate that element a is in set
S.

A subset S” of a set S is a collection of some of the elements of S. If S has
at least one element that is not in S, then S’ is called a proper subset of S. The
empty set or null set, written <, has no element in it and is considered a
subset of every set. The two most common combinations of sets are the union
U and intersection M, defined as

112
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S, US, =3S8,, asetcontaining all the elements of S, and S,,

S, NS, =3S,, asetcontaining only those elements that are both in S,
and in S,.

In this chapter we shall be concerned with the combination of two
elements within a set rather than the combination of two different sets.

Operation: Let us introduce a rule of combination called binary operation
(also called binary composition, law of composition, or internal law of composi-
tion) between two elements of a set. Addition, multiplication, subtraction,
and division are some of the familiar binary operations between two elements
in a set of numbers. To keep the binary operation general enough, we shall
use the symbol = (rather than using +, —, X, =, etc.) to denote the binary
operation. A set with operations defined on it is called an algebraic system or
just algebra.

Special Types of Algebras: Now we have a set, say S = {a, b, ¢, . . .}, and
a binary operation * (written as a * b) between the elements of S. Depending
on the nature of the binary operation x, set S can be classified as one of
several special types of algebras. For instance, if * satisfies postulates 1 and 2
below, set S is called a semigroup:

I. Closure: If a and b are in S, then a * b 1s also in S.

2. Associative: If the elements a, b, and ¢ are in S, then (a * b) * ¢ =
a*(b=xc).

Semigroups have many interesting properties and have been studied in
great detail. In fact, there are several thick books written on the theory of
semigroups. But since semigroups as such are not applicable to the business
at hand, we shall move on to more specialized semigroups.

A semigroup that satisfies postulate 3, below, is called a monoid.

3. Identity element: There exists a unique element e in S such that for any
element xin S, x*e —exx = Xx.

A monoid that satisfies postulate 4, below, is called a group.

4. Inverse: For every element x in S there exists a unique element x" in S
such that x * x" = x" * x = e. Element x’ is called the inverse of x,
with respect to operation .

A semigroup that satisfies postulate 5, below, is called an abelian semi-
group or commutative semigroup.

5. Commutative: If a and b are in S, thenax b = b * a.
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Set No operation
1.2
 /
Semigroup
> 3
Abelian
Semigroup Monoid
3 5 4
 /
Abelian c
monoid roup
4 5
Abelian }
group All five postulates

Fig. 6-1 Algebraic systems with one internal operation.

If an abelian semigroup also has an identity element, it is called an
abelian monoid (or an abelian semigroup with identity element).

A set S with an operation = that satisfies all these five postulates is called
an abelian group (or a commutative group).

Figure 6-1 summarizes the definitions of these “algebraic systems” and
shows the relationships among them. The arrows point toward the direction
of increasing restriction on the set S. The number next to a line indicates the
particular postulate that converts one algebraic system into another.

It ought to be mentioned here that an algebraic system in which the binary
operation does not satisfy even the closure and associative rules is of little
mathematical interest. Another observation that may be made is that postu-
late 4 cannot be satisfied before 3. In view of these two remarks, Fig. 6-1 does
show all possible combinations of the five postulates.

Examples: Some examples are in order now.
Consider the set of all positive integers, S, = {1, 2, 3, .. .}. Set S, satisfies
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closure and associative rules if the binary operation * is the ordinary addition
operation +. Moreover, it also satisfies the commutative requirement. Hence
S, under addition is a commutative semigroup. Note that in S, there is no
identity element (an element when added to any other element results in the
latter element).

Consider the same set S, = {1, 2, 3,...} under the ordinary division
operation --. Since S, contains no fractions, clearly S, does not satisfy the
closure rule, and hence is not a semigroup.

Again, the same set .S, under multiplication - is an abelian monoid, because
it has an identity element, 1. The set S,, however, is not a group under the
multiplication operation because S, does not have the inverse of every element
(because S, has no fractions).

The set of all integers S, ={...,—3,—2,—1,0,1,2,3,...} is an
abelian group under the addition operation (hence an additive abelian group).

The reader can verify (Problem 6-2) that the set consisting of the four
fourth roots of unity, which is {1, —1, i, —i} (where i = ./ —1), is an abelian
group under the multiplication operation (therefore, a multiplicative abelian
group).

Groups of Subgraphs: Now we shall show that sets of certain subgraphs of
any given graph G satisfy the preceding postulates and thus form their groups.
These are very fundamental and important results in graph theory.

THEOREM 6-1

The ring sum of two circuits in a graph G is either a circuit or an edge-disjoint
union of circuits.

Proof: LetI'; and I', be any two circuits in a graph G. If the two circuits have
no edges or vertices in common, their ring sum I'j @ I, is a disconnected sub-
graph of G, and is obviously an edge-disjoint union of circuits. If, on the other
Hand, I'; and I', do have edges and/or vertices in common, we have the following
possible situations:

Since the degree of every vertex in a graph that is a circuit is two, every vertex
v in subgraph I'; @ I', has degree d(v), where

dw) =2 if visin I, only, or in I'; only; or if one of the
edges formerly incident on v was in both I'; and I',; or

dwv) =4 if I'y and I, just intersect at » (without a common edge).

There is no other type of vertex in I'y @ I',. Thus I'; @ T, is an Euler graph,
and therefore consists of either a circuit or an edge-disjoint union of circuits
(Theorem 2-6).

It is immediate from Theorem 6-1 that the ring sum of any two edge-
disjoint unions of circuits is also a circuit or another edge-disjoint union of
circuits.
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THEOREM 6-2

The set consisting of all the circuits and the edge-disjoint unions of circuits
(including the null set &) in a graph G is an abelian group under the ring-sum op-
eration P.

Proof: It is required to prove that this set under the operation P satisfies
postulates 1-5 in this section. That the closure postulate is satisfied has just been
proved in Theorem 6-1. Associative and commutative postulates are also clearly
satisfied. The null graph serves as the identity element J, because @ P g = g,
for any subgraph g of G. What about the inverse ?

A circuit or an edge-disjoint union of circuits I is its own inverse, because

rer = go.

Hence the theorem. W

THEOREM 6-3

The set consisting of all the cut-sets and the edge-disjoint unions of cut-sets
(including the null set &) in a graph G is an abelian group under the ring sum
operation.

Proof: It is follows from Theorem 4-4 that this set satisfies the closure axiom.
Associativity and commutativity are also immediately apparent. And so is the
existence of the identity element . Just as in the case of circuits, a cut-set or an
edge-disjoint union of cut-sets is its own inverse. Thus the theorem. [l

6-2. SETS WITH TWO OPERATIONS

Now suppose that on the elements of an abelian group we impose another
binary operation (©), in addition to the operation * imposed in Section 6-1. The
five postulates on () can be written as follows (note that these are the same
postulates as in Section 6-1, but they are for a different binary operation (©)):

6. Closure: If a and b are in S, then a () b is also in S.
7. Associative: If a, b, and care in S, then (a(O)b) ODc=a O b o).

8. Identity element: There exists a unique element ; in .S such that for any
element x in S, x ) i = i () x = x. This element i is called the iden-
tity element (or unity) with respect to operation ().

9. Inverse: For every element (except for the identity element e of pos-
tulate 3 in Section 6-1) x in S, there exists a unique element x~! in S
such that x () x™! = x~! () x = i. Element x~! is called the inverse of
x, with respect to operation ().

10. Commutative: If a and b are in S, thena (O b =b () a.

And to relate these two different binary operations, postulate 11 is introduced.
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11. Distributive: The operation (©) is distributive with respect to the
operation =; that is, for elements a, b, and cin S

a@Obxc)y=a@Ob*xa()ec,
and brxcyOa=bHaxc()a.

Just as in Section 6-1, the different combinations of these postulates, in
addition to postulates 1-5, will render different types of algebraic systems.
These are

Ring: An abelian group with respect to * that satisfies postulates 6, 7, and
11 is called a ring.

Ring with Unity: A ring that has a unity or identity element i with respect
to the second operation (*).

Commutative Ring: A ring that satisfies the commutative postualate (10)
with respect to ().

Commutative Ring with Unity: A commutative ring that has an identity
element (8) with respect to ().

Division Ring (or Skew Field or S-Field): A ring with unity that also sat-
isfies the inverse postulate (9) with respect to ().

Field (sometimes called Commutative Field): A division ring that satisfies
the commutative postulate (10) with respect to (). Thus a field satisfies all
eleven postulates, and therefore may be regarded as the “strongest” algebraic
system considered here.

The relationship among these algebraic systems is summarized in Fig. 6-2.

Examples: As mentioned in Section 6-1, the set of all integers
S,=4{..,—-3,-2,—-1,0,1,2,3,...}

is an abelian group under -, the usual addition operation. Moreover, ordi-
nary multiplication between elements of S, also satisfies the closure, associa-
tive, distributive, and commutative postulates, and there is a unity element, 1,
in S,. Thus S, is a commutative ring with unity. However, since S, does not
contain fractions, it does not satisfy postulate 9, and hence S, is not a field.

The set of all rational numbers does satisfy postulate 9, in addition to the
other ten satisfied by S,. Therefore, the set of all rational numbers is a field
under addition and multiplication. The set of all real numbers also forms a
field under addition and multiplication. A/l complex numbers also form a field
under the usual addition and multiplication.

In this book we shall mainly be concerned with groups and fields. The
rest of the algebraic systems are defined simply for your general interest.
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Abelian 1 -5
group
6,7, 11
Ring
10 8
Commutative Ring with
ring unity
8 10 9
Commutative o
. ! Division
ring with rin
unity g
9 10
Field 1 - 11

Fig. 6-2 Algebraic systems with two internal operations.

6-3. MODULAR ARITHMETIC AND
GALOIS FIELDS

Consider a system of numbers that has only three numbers in it, ordinary
0, 1, and 2. And let the rules for addition and multiplication in this system be
the same as ordinary addition and multiplication with the following exception:
If a number g (resulting from addition or multiplication operations) equals or
exceeds 3, it is to be divided by 3, the quotient is discarded, and the remainder
is used in place of g. The addition and multiplication tables for such a number
system are given in Fig. 6-3, and are called addition modulo 3 and multiplica-
tion modulo 3. Together they are called modulo 3 arithmetic. For example, in
modulo 3 arithmetic,

1+1422414+24+1=1 (mod3).

Similarly, we can define any modulo m arithmetic system consisting of m
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+ 0 ! 2 0 1 2
4# -ﬂ

0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 ] 2 0 2 1

(a) (b)

Fig. 6-3 Addition and multiplication tables for arithmetic modulo 3.
elements 0, 1, 2,..., m — 1 and the relationship for any ¢ > m — 1:
g=m-p-+r=r (mod m) and r < m.

It is suggested that the reader write down arithmetic tables for m = 4, 5, 6,
and 7 (Problem 6-7).

Finite Fields: From the tables in Fig. 6-3, it can be verified that the set
{0, 1, 2} with addition and multiplication modulo 3 is a field. There is an
identity O with respect to modulo 3 addition, and an identity 1 with respect to
modulo 3 multiplication. Every element has a unique additive inverse, and
every element other than 0 has a multiplicative inverse.

By means of actual tables, like those in Fig. 6-3, it can be easily verfied
that modulo 2, 5, and 7 systems are also fields. On the other hand, the set
{0, 1, 2, 3} with modulo 4 addition and multiplication is not a field, because no
inverse of 2 exists with respect to modulo 4 multiplication (Problem 6-8).

In fact, it turns out that every finite set

Z, ={0,1,2,...,m— 1}

with modulo m addition and multiplication is a field if and only if m is a
prime number. Such a field is called a Galois field modulo m, or GF(m).

As we shall see shortly, in representing graphs we are concerned only with
GF(2), Galois field modulo 2. It consists of {0, 1} and the addition modulo 2
and multiplication modulo 2 operations. The two arithmetic tables are given
in Fig. 6-4. (Those familiar with computer logic will readily recognize that in

+ 0 | . 0 |
0 0 | OTO 0
I 1 0 1 0 ]

(@) (b)

Fig. 6-4 Addition and multiplication tables of GF(2).
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Fig. 6-4, + is the same as “EXCLUSIVE OR” and - is the same as “AND”
of Boolean logic.)

6-4. VECTORS AND VECTOR SPACES

In an ordinary two-dimensional (Euclidean) plane, a point is represented
by an ordered pair of numbers X = (x,, x,). Point X can also be regarded as
a vector emanating from the origin 0 = (0, 0) to the point (x,, x,). Similarly,
in three-dimensional Euclidean space the triplet (7, 2.1, —3) represents a
vector. Sometimes, instead of row notation a column notation is used, for
example,

7
2.1}
—3

The three components 7, 2.1, and —3 in the example above are from the
field of real numbers. Every point (of the infinitely many points) in E;, the
three-dimensional Euclidean space, corresponds to a unique ordered triplet
(of the infinitely many triplets) consisting of three real numbers.

Now suppose that we are working with GF(2), the field of integers modulo
2. Then every number in a triplet can only be either O or 1. Thus there are only
eight (23 = 8) vectors possible (instead of infinitely many as in the real
number system) in a three-dimensional space if our numbers are restricted to
GF(2). These are

(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (O,1,1), (1,1,1).

This concept of representing vectors can be extended to representation of
a vector in k-dimensional space by means of an ordered k-tuple. For instance,
the 7-tuple (0, 1,1,0,1,0,1,) represents a vector in a seven-dimensional
vector space over the field GF(2).

The numbers in a field are sometimes called scalars (to distinguish them
from vectors). The scalars in the field GF(2) are 0 and 1.

A vector space, in addition to being made up of k-tuples (from some
specified field), must satisfy certain other conditions regarding combinations
of two vectors, or operation of a vector with a scalar, and the like. These can
be summarized in the following definition.

DEFINITION

A k-dimensional vector space (or a linear vector space) over the field F, is an
object consisting of

1. A field F (with its set of elements S, and two operations * and ().
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2. A set W of k-tuples (all numbers taken from F).

3. A binary operation (called vector sum) between the elements of the set
W, such that W is an abelian group under this operation [3].

4. A binary operation [-] (called scalar multiplication), which when applied

between any scalar ¢ in F and a vector X = (x;, x5, ..., Xz) in W produces
another vector P in W. P is called the scalar product of ¢ and X, and is
given by

=c[X=0COx,cOxz ..., xp).

Furthermore, scalar multiplication satisfies the following:

i EHX)=(; Oc)OX, where ¢y, c; € F,
aOXEY)=aOXHe Y,
(cr*c))X=c; OXHea IX,

1 X=X, where 1 is the identity with
respect to operation () in F.

Let us now leave the general vector space, and concern ourselves with the
specific vector space associated with a graph G.

6-5. VECTOR SPACE ASSOCIATED WITH
A GRAPH

Let us consider the graph G in Fig. 6-5 with four vertices and five edges
e, e,, €5, e,,es. Any subset of these five edges (i.e., any subgraph g) of G can
be represented by a S-tuple:

X = (xl’ Xas X35 Xg, xs)
such that
x, = | if e; is in g and

x, =0 if e, is not in g.

For instance, the subgraph g, in Fig. 6-5 will be represented by (1, 0, 1, 0, 1).

G g[ g2

Fig. 6-5 Graph and two of its subgraphs.
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Altogether there are 2° or 32 such 5-tuples possible, including the zero
vector 0 = (0, 0, 0, 0, 0), which represents a null graph,t and (1, 1,1, 1, 1),
which is G itself.

It is not difficult to see that the ring-sum operation between two subgraphs
corresponds to the modulo 2 addition between the two S-tuples representing
the two subgraphs. For example, consider two subgraphs

g, = {e,, e;, €5} represented by (1,0, 1,0, 1), and
g, = {e,, ;, ¢,} represented by (0, 1, 1, 1, 0).

The ring sum
g, Dg, =1{e, e, e, el represented by (1, 1,0, 1, 1),

which is clearly modulo 2 addition of the 5-tuples for g, and g,.

Now, generalizing this example, we can make the most important observa-
tion of this chapter: There is a vector space W associated with every graph
G, and this vector space consists of

1. Galois field modulo 2; that is, set {1, 0} with operation addition modulo
2 written as + suchthat0 + 0 =0,1 4+-0=1=04 1,141 =0,
and multiplication modulo 2 written as - such that 0-0 =0 = 1.0 =
O-1,and 1.1 = 1.

2. 2¢ vectors (e-tuples), where e is the number of edges in G.

3. An addition operation between two vectors X, Y in this space, defined
as the vector sumi

X@Y:(xl+yl’x2 +y2""’xe+ye)7

-+ being addition modulo 2.

4. And a scalar multiplication between a scalar ¢ in Z, and a vector X,
defined as ¢ X = (¢+x,,..., Cc-X,).

The reader can verify that the vector space W associated with a graph G,
as defined above, does indeed satisfy all the requirements of a vector space

tIn considering vector spaces of graphs, isolated vertices are of no consequence.
Hence a null graph of four vertices is not distinguished from a null graph of 100 vertices.

1The same symbol P has been used for the ring sum of two subgraphs, as well as for
the vector sum between the two vectors representing the two subgraphs. This is done as
much to eliminate an extra symbol as to remind the reader that a ring sum between two
subgraphs amounts to the same thing as vector sum of the corresponding vectors. There
will be no occasion for ambiguity.
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(Problem 6-11). Note that the identity element (for the vector sum operation)
in a vector space is O, the zero vector.

6-6. BASIS VECTORS OF A GRAPH

Linear Dependence: A set of vectors X,, X,, ..., X, (over some field F) is
said to be linearly independent if for scalars c,, c,, . . ., ¢, in F the expression

X, Fe,X,4+ -+ X, =0

holds only if ¢, = ¢, = - -+ = ¢, = 0. Otherwise, the set of vectors is said to
be linearly dependent. For example, consider the set of three vectors, over the
field of real numbers:

I 0 3
X, =[4], X,=[1] X,=]o]
0 2 0

An arbitrary linear combination of these three vectors set to zero gives

c, 0 3c, ¢, + 3¢, 0
e X, Xy + Xy, =de, |+l ey | +10 | =4, + c,|=|0]
0 2c, 0 2c, 0

That is, 2¢, = 0, 4¢, + ¢, = 0, and ¢, + 3¢; = 0, which hold only if
¢, = ¢, = ¢, = 0. Thus the set of vectors {X,, X,, X,} is linearly independent.

On the other hand, consider another set of vectors (over the same field of
real numbers):

0 1 5
X,=| 2|, X,=[2], x,=|o]
-2 0 1

Setting an arbitrary linear combination of these vectors to zero,

cs + 5S¢ 0
C Xy + X5 + ceXg = 2¢, + 2¢51=10}>
"_264 + C6 0

gives ¢, = —c¢s = .5¢, = &, where o can be any real number not necessarily
zero. Therefore, the set {X,, X;, X4} is linearly dependent.

Basis Vectors: To the set of three linearly independent vectors {X,, X,, X;}
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in the first example, let us add another vector

Y1
Y=y}

Y3

Now you can show without much difficulty that the set {X,, X,, X;, Y} is
linearly dependent regardless of what Y is. In other words, you can find a set
of four real numbers q, b, ¢, and d (not all of which are zero) such thatt

aX, + bX, + cX; + dY = 0. (6-1)
Rewriting Eq. (6-1),

b
Y= X — =X - 52X,

Thus a vector Y can be expressed as a linear combination of the vectors X,,
X,, X;. Such a set of k linearly independent vectors is called a basis (or the
coordinate system) in the vector space. More formally:

If every vector in a vector space W can be expressed as a linear combina-
tion of a given set of vectors, this set is said to span the vector space W. The
dimension of the vector space W is the minimal number of linearly independent
vectors required to span W. Any set of k linearly independent vectors that
spans W, a k-dimensional vector space, is called a basis for the vector space W.

For example, the following set of k unit vectors in a k-dimensional vector
space is a basis. This is the most commonly used basis, and is often called the
natural or standard basis.

1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

It is clear that any vector in the k-dimensional vector space (over the field of
real numbers) can be expressed as a linear combination of these k vectors.

Basis Vectors of a Graph: In Section 6-5 it was shown that there was a

tOne possible solution (out of infinitely many) that satisfies Eq. (6-1) is

ot o= (25, bo(y) c—-(sipin)
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vector space W, associated with every graph G. Corresponding to each sub-
graph of G there was a vector in W, represented by an e-tuple. The natural
basis for this vector space W is a set of e linearly independent vectors, each
representing a subgraph consisting of one edge of G. For instance, for the
graph in Fig. 6-5, the set of the following five vectors serves as a basis for W.

(1,0,0,0,0),
(0, 1, 0,0, 0),
0,0, 1,0, 0),
0, 0,0, 1, 0),
(0,0, 0,0, 1).

Any of the possible 32 subgraphs (including G as well as the null graph) can
be represented by a suitable (and unique) linear combination of these five
basic vectors.

6-7. CIRCUIT AND CUT-SET SUBSPACES

A nonempty subset of vectors in a space is called a subspace if the subset
satisfies the axioms of a vector space. To check whether a given subset of
vectors is a subspace we have only to check for closure under scalar multi-
plication and vector addition. Since the scalar product of 0 and a vector X is
the zero vector O, the closure under scalar multiplication assures the presence
of 0. Closure under scalar multiplication also assures the inverse of every
vector [because the inverse of vector X is the vector (— 1) X]. If the associative,
commutative, and distributive axioms hold in the original space, they must
also hold for every subset of vectors. Thus a subset of vectors closed under
vector addition and multiplication by scalars is a subspace.

A vector space is trivially its own subspace. The null space, consisting of
0, is also a subspace. A Euclidean plane E, through the origin is a subspace of
the three-dimensional Euclidean space E,. A line E, through the origin is a
subspace of both E, and E,.

The dimension of a subspace is the number of linearly independent vectors
required to span the subspace.

Subspaces in W¢g

In the vector space W (over the Galois field modulo 2) associated with a
graph G, let us consider the following two types of vectors: A circuit vector is
a vector in W representing either a circuit or a union of edge-disjoint circuits
in graph G. A cut-set vector is a vector in W representing either a cut-set or a
union of edge-disjoint cut-sets in G.
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We know that in the vector space W the linear combination of two vectors
(which is simply modulo 2 addition of their components) corresponds to the
ring sum of the corresponding subgraphs in G. From Theorem 6-2, the ring
sum of two circuits (or unions of edge-disjoint circuits) is a circuit or a union
of edge-disjoint circuits. Therefore, the linear combination of two circuit
vectors is also a circuit vector. Hence

THEOREM 6-4

The set of all circuit vectors in W forms a subspace Wr.

Based on parallel arguments and on Theorem 6-3, we have an identical
result for cut-set vectors.

THEOREM 6-5

The set of all cut-set vectors in W; forms a subspace Ws.

Quite naturally, subspaces W and W are called the circuit subspace and
cut-set subspace, respectively.

Bases of Wg and Wr

After having discovered that a particular set of vectors constitutes a
subspace, the questions that one asks next are: What is the dimension of this
subspace? How many vectors does the subspace contain? These questions
about the subspaces W, and W are answered by the following important
results.

THEOREM 6-6

The set of circuit vectors corresponding to the set of fundamental circuits,
with respect to any spanning tree, forms a basis for the circuit subspace Wr.

Proof: Consider a spanning tree, 7, in a connected graph G, with n — 1 =r
tree branches and e — n + 1 = u chords. Adding a chord ¢, to T produces a
fundamental circuit, and the corresponding circuit vector can be included in the
basis of Wr. Adding another chord ¢, to subgraph 7 U ¢, produces another
fundamental circuit, with at least one edge that was not in the previous circuit.
Therefore, the circuit vector representing the second fundamental circuit and the
first circuit vector are linearly independent. Thus both these circuit vectors can be
included in the basis. Adding a third chord to 7 U ¢, U ¢, will give another funda-
mental circuit with at least one edge not in either of the previous circuits. Therefore,
this third circuit vector can also be included in the basis. Continuing with this
argument, we see that all the u vectors successively obtained this way are linearly
independent, because each represents a circuit containing at least one edge not
present in any of the previous ones. Therefore, these u vectors, each corresponding
to a fundamental circuit, are linearly independent.
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Now we have to show that every circuit vector is a linear combination of these
M vectors.
Consider an arbitrary circuit I';} in G, such that

rl = {6’1,6’2,- N AT 1T P s €mls

where edges ey, e,, . . ., ¢; are chords with respect to T, and ¢;,,, €¢;,2, ..., e, are
branches of 7.

Let g be a subgraph obtained by taking the ring sum of the i/ fundamental cir-
cuits formed by the chords e;, 5, ..., and e;.

Because of Theorem 6-1, subgraph g must be a circuit or a union of edge-
disjoint circuits. Assume I'; = g. Then the subgraph I'; @ g must be either a
circuit or a union of edge-disjoint circuits. But since both I'; and g contain the
chords ey, e,, . . ., ¢; and no other chords, the subgraph I'; @ g will not contain
any chord with respect to 7. Hence I'; @ g has no circuit, a contradiction. So
I', =g

Thus we have shown that any circuit (and by extension a union of edge-disjoint
circuits) in G can be expressed as a ring sum of some of the fundamental circuits
with respect to 7. The vectors corresponding to a set of fundamental circuits must
therefore span Wr. B

As was brought out in Chapter 5, every set of fundamental circuits con-
stitutes a basis in the circuit subspace Wi (i.e., forms a set of basic circuits),
but every basis in the circuit subspace need not correspond to a set of fun-
damental circuits. (See Problems 5-15 and 6-18.)

COROLLARY

The dimension of the circuit subspace Wr is equal to the nullity x4 of the graph,
and the number of circuit vectors (including 0) in Wr is 2~

Employing an argument parallel to that used in proving Theorem 6-6, it can be
shown that the r cut-set vectors, each corresponding to a fundamental cut-set with
respect to a spanning tree, are linearly independent.

Also, by a parallel argument it can be proved that any cut-set or a union of
edge-disjoint cut-sets can be obtained by taking the ring sum of a subset of the r
fundamental cut-sets with respect to a spanning tree. And thus we get a similar
result for the cut-set subspace.

THEOREM 6-7

The set of cut-set vectors corresponding to the set of fundamental cut-sets,
with respect to any spanning tree, forms a basis for the cut-set subspace Wj.
COROLLARY

The dimension of the cut-set subspace Wy is equal to the rank r of the graph,

and the number of cut-set vectors (including 0) in W is 27,

Example: Let us now illustrate these results with an example.
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For the graph G in Fig. 6-5
number of edges, e = 5,
rank, r = 3,

nullity, 4 = 2.

The number of vectors in the circuit subspace, therefore, is 22 = 4, and these
are

1 0 1 0
1 0 1 0
1{, 1], j0], and |O].
0 1 1 0
0 1 1 0
—_———

a basis of W

The first two of these vectors correspond to the set of fundamental circuits
with respect to either of the spanning trees in Fig. 6-5, and therefore they form
a basis for Wr. (In fact, any two of the first three vectors form a basis of W..)
The three subgraphs, each corresponding to a nonzero vector in Wy, are
shown in Fig. 6-6.

The cut-set subspace W has a dimension of three, and therefore the
number of vectors in Wy is 2°® = 8. These cut-set vectors are

] 1 0 0 1 0 I 0
] 0 0 ] 0 ] 1 0
o, (1, (O}, (1}, 11}, (1], |0}, |0}
0 0 1 ] 1 0 1 0
0 ] 1 0 0 1 ] 0

a basis of W

The first three vectors correspond to the three fundamental cut-sets with
respect to the tree g, in Fig. 6-5. The rest of the vectors can easily be seen to
be the vector sums of -any two or three of these basis vectors. The seven

e €
e 1
€ € 3
e
> U
3 es €

Fig. 6-6 Circuits in graph G of Fig. 6-5.
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Fig. 6-7 Cut-sets and union of edge-disjoint cut-sets in graph G of
Fig. 6-5.

subgraphs, each corresponding to a nonzero cut-set vector, are sketched in
Fig. 6-7.

In this example you may have observed that the subgraph {e,, e,, e,, e5} is
both a circuit and a union of two edge-disjoint cut-sets. The vector (1, 1, 0, 1,
1) corresponding to this subgraph, therefore, occurs in both subspaces Wi
and Wi.

Another observation you may have also made is that there are at least
(2¢ — 2# — 27 4 1) nonzero vectors which are neither in Wy nor in Wy. In
this example we must have at least 21 (= 25 — 23 — 22 4 1) such vectors.
Since there is one vector common to Wy and W, we have in fact 22 vectors in
W, that are neither circuit vectors nor cut-set vectors.

Having obtained some insight into the circuit subspace and cut-set sub-
space, let us now explore the relationship between these two subspaces.

6-8. ORTHOGONAL VECTORS AND SPACES

Consider two vectors (4, 2) and (—3, 6) in a plane (which is also called a
two-dimensional Euclidean space E,), as shown in Fig. 6-8. These vectors are
orthogonal because their dot product 4-(—3) 4+ 2-6 = 0. Generalizing this
notion to a k-dimensional vector space, we have the following definitions:

Dot Product: The dot product of two vectors X and Y in a vector space W
is a scalar quantity defined as

XY =(x;, X0 - oo X)) (Vis Vs oo o5 Vi)
=Xyt Xy Y2 b Xy
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(-3, 6) +

Fig. 6-8 Pair of orthogonal vectors in
space E».

Orthogonal Vectors: Two vectors are called orthogonal if their dot product
is zero; and two subspaces are said to be orthogonal to each other if every
vector in one is orthogonal to every vector in the other.

Returning to the vector space associated with a graph G, the dot product
of two vectors, each representing a subgraph of G, is the modulo 2 sum of the
products of the corresponding entries in the two vectors. For example, the dot
product of the vectors representing subgraphs g, and g, in Fig. 6-5is

(1,0,1,0,1)-(0,1,1,1,0) = 1-0 + 0-1 + 1-1 4 0-1
+ 1.0 (mod 2 sum)
=0+0+4+14+0+4+0
= 1.

The number of nonzero entries in the sum of products above is the number of
edges common to g, and g,. Theorem 6-8 follows directly from the definition
of the dot product of two vectors.

THEOREM 6-8

The dot product of two vectors, one representing a subgraph g and the other ¢/,
is zero if the number of edges common to g and g’ is even; the dot product is 1 if
the number of common edges is odd.

THEOREM 6-9

In the vector space of a graph, the circuit subspace and the cut-set subspace
are orthogonal to each other.

Proof: According to Theorem 4-3, the number of edges common to a circuit
and a cut-set is even. What about the number of edges common to a union of
edge-disjoint circuits and a union of edge-disjoint cut-sets ? That this is also even
can be shown as follows:

Let g; be a union of three edge-disjoint circuits I'y, I",, and I'; in a graph G,
and g, be a union of two edge-disjoint cut-sets S; and S, in G.

Let the number of edges common to
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I'; and S, be 2aq,
I', and S, be 25,
I'; and S, be 2c,
I'; and S, be 24,
I'; and S, be 2e,
I'; and S, be 2f.

Since there is no edge common between S; and S,, or between I'; and I';, and
I';, the six sets of common edges enumerated above are all distinct (some may be
empty). Therefore, the number of edges common to g; and g, is

2a 4- 2b + 2c - 2d + 2e + 2f, an even number.

This example can be extended to g; and g, to include the union of any finite
numbers of edge-disjoint circuits and cut-sets, respectively. From Theorem 6-8,
the dot product of a circuit vector and a cut-set vector is zero. Hence every vector
in each of these subspaces is orthogonal to every vector in the other. Therefore,
the theorem. |

For instance, the dot product of the cut-set vector (0, 1, 1, 1, 0) and the
circuit vector (1, 1, 1, 0, 0) in the example in Section 6-7 (i.e., Fig. 6-5) is

0,1,1,1,0)-(1,1,1,0,0) =0-1 4+ t-1 + 1-1 4+ 1-0+ 0-0
=0 (mod 2).

6-9. INTERSECTION AND JOIN OF W AND Wg

Given the two subspaces Wy and W of the vector space Wy, it is interest-
ing to ask what is the largest set of vectors that belongs to both circuit
subspace Wi and the cut-set subspace Ws; and what is the smallest set of
vectors containing both Wi and Ws? Clearly, the null or zero vector O is in
both Wi and Wy, but there may also be some nonzero vectors contained in
the intersection W N Wj. For example, the vector

I
I
0
1
I

for the graph in Fig. 6-5 is in both subspaces. It is not difficult to show that
the set of vectors W N W, always forms a vector subspace in Wg.
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On the other hand, the smallest subspace containing both W and Wj
must contain the set union W U W, of course, but (because of the closure
requirements for a subspace) it will usually contain some additional vectors
not in W U Ws. For example, for the graph in Fig. 6-5set W U W contains
10 vectors (union of Figs. 6-6 and 6-7), while the smallest subspace con-
taining set W U Wj, that is, the subspace spanned by the set of vectors in
Wr U W, consists of 16 vectors. (What are the remaining six subgraphs not
included in Figs. 6-6 and 6-7?) The subspace spanned by Wy U W is called
the join of Wi and Wy, and is written as W V Wj.

The following is a well-known result from linear algebra: If X and Y are
two subspaces in a finite-dimensional vector space, then the dimension of
their join, dim(X V Y), is given by

dim(XVY)=dim X + dim Y — dim(X N Y).
Using this result, we get
dim(WrV Ws) == € — dim(Wr m Ws).

Two subspaces of a vector space are said to be orthogonal complements if the
subspaces are orthogonal to each other, and they together span the entire
vector space. Thus we have the following interesting result.

THEOREM 6-10

Subspaces W and W are orthogonal complements if and only if
dim(Wr M Ws) = 0, i.e., Wr‘ M WS = 0.

In other words, a set of basis vectors of Wi together with a set of basis
vectors of W form a basis for W;; if and only if W. N W = 0. Consequently,
any subgraph g of G can be uniquely expressed as a ring sum of two sub-
graphs, one a circuit or an edge-disjoint union of circuits and the other a cut-
set or an edge-disjoint union of cut-sets, if and only if

Wrm WSZO.

These properties are illustrated in Fig. 6-9.
In the case
WrN Wsg#0

we have nonzero vectors each orthogonal to itself. This seemingly peculiar
situation arises from the finiteness of the field. In fact, the dot product of any
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dim W; =e=3
ay a3 ,
dimWg=n -1=2
dim Wy =u=1
a3

Graph ¢

W;. contains

We contains <
0

W. N Wg={ 0 =0
0

o (000006

The remaining three vectors are uniquely expressed as

B ()= ()
- ()o3) -
5 ()=

Fig. 6-9 Graph and its different subspaces.

vector over GF(2) with itself is zero if and only if the vector contains an even
number of 1’s.
Now, since

dim(Wr N W) #= 0,
the two subspaces W and W are not orthogonal complements. Nor is it

possible to express every vector in W as a sum of two vectors, one from W
and the other from Wjs. For example, in Fig. 6-5 no linear combination of
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vectors in W and W will yield the vector

S O O O =

In fact, for Fig. 6-5 there are 16 such vectors in W that are not in W V W,
because

The reader is encouraged to sketch a figure like Fig. 6-9, using the graph
in Fig. 6-5. Identify all 32 subgraphs, and place them in subspaces Wy, W,
(Ws N Wp), and (Ws V Wr). For more on properties of these subspaces see
[6-8] and [6-1].

SUMMARY

In this chapter various algebraic or number systems were introduced, and
it was shown that to every graph G corresponds a vector space W over the
field of integers modulo 2 [i.e., GF(2)]. For a graph G with e edges the
dimension of W; is e, and the number of vectors in W is 2¢, each corre-
sponding to a subgraph of G.

Cut-sets and unions of edge-disjoint cut-sets formed an r-dimensional
subspace W in W;. The number of vectors in subspace Wy is naturally 27,
each vector corresponding to a cut-set or a union of edge-disjoint cut-sets.
Similarly, the circuits and union of edge-disjoint circuits correspond to a
u-dimensional vector space Wi, with 2# vectors. Out of many bases available,
the set of u vectors representing all fundamental circuits, with respect to any
spanning tree, forms a convenient basis in the circuit subspace. Likewise, the
set of r fundamental cut-sets, with respect to any spanning tree, provides a
basis in the cut-set subspace.

The cut-set subspace and circuit subspace of a graph are orthogonal to
each other. The intersection of these two subspaces is not necessarily {O};
that is, there may be nonzero vectors common to cut-set and circuit sub-
spaces. Every one of these vectors in Wy N Wi is orthogonal to itself, and
they (including the origin 0) form another vector subspace. The set of
vectors in the union Wi U Wr does not necessarily form a vector space.

It was also shown that W; has, in general, a large number of vectors
(2¢ — 2# — 27 4+ 1 vectors or more) which belong neither to the cut-set
subspace nor to the circuit subspace.

On one hand, a graph provides an elegant and concrete example of
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“spaces” of more than three dimensions, which often appear frighteningly
mysterious to many nonmathematicians. A graph also provides an example
of a vector space over a field other than those of usual real or complex
numbers. On the other hand, a study of the vector space of a graph and the
nature of different subspaces shows us “what makes a graph tick.” It gives us
an additional mathematical footing in analysis and applications of graphs,
such as in coding theory (to be covered in Chapter 12).

Vectors and matrices are closely related. In the next chapter we will
explore various matrices associated with a graph, and tie the vector spaces
and matrices of graphs together.
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PROBLEMS

6-1. Show that the usual operation of subtraction does not satisfy the associative axiom,

6-2. Show that the set of the four fourth roots of unity that is, {1, —1, 7, —i}, satisfies
all five criteria for being an abelian group under the ordinary multiplication
operation.
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6-3.

6-4.

6-6.

6-7.

6-8.

6-9.

6-10.

6-11.

6-12.

6-13.

6-14.

6-15.

6-16.
6-17.

6-18.

6-19.

6-20.
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Given a set {x, y, z} of three elements, show that there is only one group possible
with this set.

From the table in Fig. 6-3(a), show that each element in the set {0, 1,2} has a
unique inverse under modulo 3 addition. What about under multiplication modulo
3? Use the table in Fig. 6-3(b).

Show that there are only two different groups possible with four elements, and that
both these groups are abelian.

Given a set {a, b, ¢, d} of four elements, construct two four by four tables for
operations * and (©), such that the set is a field. Identify the letters playing the roles
of identities with respect to * and © (i.e., 0 and 1).

Write down the addition and multiplication tables for each of modulo 4, 5, 6, and
7 arithmetics (similar to those in Figs. 6-3 and 6-4).

From the appropriate table in Problem 6-7, show that not every nonzero element
(i.e., 1, 2, and 3) has a unique inverse under the modulo 4 multiplication operation.
Show that the modulo 6 system is an abelian ring with unity, but is not a field.
Prove that in any vector space the null vector O is orthogonal to every vector in
the space.

Show that Wg, as defined in Section 6-5, satisfies all four conditions for being a
vector space, as stated in Section 6-4.

In vector space Wg, do the vectors associated with the spanning trees of G form
a vector space over GF(2)? Explain.

Let G be a graph consisting of a circuit of length four. Depict the four subspaces
Ws, Wr, Wr " Ws, and WrV Ws as was done in Fig. 6-9. Draw the corres-
ponding subgraphs. Have all 16 subgraphs of G been accounted for?

Repeat Problem 6-13 for a complete graph of four vertices. Find a basis for W
and Wr.

If a graph G is a tree (or a forest), show that the cut-set subspace Wi fills the entire
vector space Wi of graph G.

Characterize a graph for which the circuit space contains the vector (1,1,..., 1).
Prove that the number of distinct bases possible in a cut-set subspace is

%,(2r — 20)(2r — 21)(2r — 22)...(2r — 25 1),

where r is the rank of the graph.

Prove that the number of spanning trees in a connected labeled graph with nullity
u cannot exceed the number

ﬂ—‘,(zu _20)Qu — 21)(2k — 22) ... (2K — 2u-1),

(Hint: Associated with each spanning tree there is a distinct basis in subspace Wr,
corresponding to the set of fundamental circuits. Therefore, there are at least as
many distinct bases in Wr as the number of different spanning trees.)

Sketch a graph G that has the following vectors (among others) in its circuit sub-
space: (0,1,1,1,1,0,0,1), (0,1,1,1,0,1,1,0), (0,1,0,0, 1,0, 1,0), (0, 1, 0,0, 0,
1,0, 1), (1,0,1,0,1,1,0,1), (1,0,1,0,0,0,1,0), (1,0,0,1,1,1,1,0), and (1,0,
0,1,0,0,0,1).

Given that a graph is connected and that Wr N Wy # 0, investigate further the
properties of the subgraphs corresponding to the vectors in subspaces (a) Wr N Wy
and (b) Wr VvV Ws.
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Although a pictorial representation of a graph is very convenient for a
visual study, other representations are better for computer processing. A
matrix is a convenient and useful way of representing a graph to a computer.
Matrices lend themselves easily to mechanical manipulations. Besides, many
known results of matrix algebra can be readily applied to study the structural
properties of graphs from an algebraic point of view. In many applications
of graph theory, such as in electrical network analysis and operations re-
search, matrices also turn out to be the natural way of expressing the problem.

In this chapter we shall consider two most frequently used matrix repre-
sentations of a graph. Also a correspondence between some graph-theoretic
properties and matrix properties will be established. In view of the close tie
between matrices and vector spaces, this chapter should, in fact, be looked
upon as a continuation of Chapter 6. A rudimentary knowledge of matrix
algebra is assumed.

7-1. INCIDENCE MATRIX

Let G be a graph with n vertices, e edges, and no self-loops. Define an n
by e matrix A = [a,;], whose n rows correspond to the n vertices and the e
columns correspond to the e edges, as follows:

The matrix element

a; =1, if jth edge e, 1s incident on ith vertex v;, and

= 0, otherwise.

137
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a b e d e / g h
— -
y [0 0 0 1 0 1 0o 0
w | 0 0 0 0 1 1 ! 1
w2 |0 0 0o 0 0 0 0 1
v, | | 1 1 0 1 o 0 0
v, | 0 0 1 1 0o 0 1 0
v | | 1 o o0 0o 0 0 0

(b)

Fig. 7-1 Graph and its incidence matrix.

Such a matrix A is called the vertex-edge incidence matrix, or simply incidence
matrix. Matrix A for a graph G is sometimes also written as A(G). A graph
and its incidence matrix are shown in Fig. 7-1.

The incidence matrix contains only two elements, 0 and 1. Such a matrix
is called a binary matrix or a (0, I)-matrix. Let us stipulate that these two
elements are from Galois field modulo 2.t Given any geometric representa-
tion of a graph without self-loops, we can readily write its incidence matrix.

tAlthough matrices are customarily defined over a commutative ring with identity,
which need not be a field (such as the ring of integers), we have defined matrix A over a
field, GF(2), in keeping with our definition of the vector space Ws in Chapter 6.
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On the other hand, if we are given an incidence matrix A(G), we can construct
its geometric graph G without ambiguity. The incidence matrix and the
geometric graph contain the same informationf—they are simply two al-
ternative ways of representing the same (abstract) graph.

The following observations about the incidence matrix A can readily be
made:

1. Since every edge is incident on exactly two vertices, each column of
A has exactly two 1’s.

2. The number of 1’s in each row equals the degree of the corresponding
vertex.

3. A row with all O’s, therefore, represents an isolated vertex.

4. Parallel edges in a graph produce identical columns in its incidence
matrix, for example, columns 1 and 2 in Fig. 7-1.

5. If a graph G is disconnected and consists of two components g, and
g,, the incidence matrix A(G) of graph G can be written in a block-
diagonal form as

A(G) — F‘- ----- S } (7-1)

where A(g,) and A(g,) are the incidence matrices of components g,
and g,. This observation results from the fact that no edge in g, is
incident on vertices of g,, and vice versa. Obviously, this remark is
also true for a disconnected graph with any number of components.

6. Permutation of any two rows or columns in an incidence matrix simply
corresponds to relabeling the vertices and edges of the same graph.
This observation leads us to Theorem 7-1.

THEOREM 7-1

Two graphs G| and G, are isomorphic if and only if their incidence matrices
A(G,) and A(G,) differ only by permutations of rows and columns.

Rank of the Incidence Matrix: Each row in an incidence matrix A(G) may
be regarded as a vector over GF(2) in the vector space of graph G. Let the

tJust as in any two alternative methods of representation, some properties are more
evident in one representation than in the other. For example, the fact that the graph is
planar is obvious in Fig. 7-1(a), whereas it is not at all obvious from the matrix in Fig.
7-1(b).
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vector in the first row be called A,, in the second row A,, and so on. Thus

AG) =| " | (7-2)

Since there are exactly two I’s in every column of A, the sum of all these
vectors i1s O (this being a modulo 2 sum of the corresponding entries). Thus
vectors A, A,, ..., A are not linearly independent. Therefore, the rank of
A is less than n; that is, rank A < n — 1.

Now consider the sum of any m of these n vectors (m << n — 1). If the
graph is connected, A(G) cannot be partitioned, as in Eq. (7-1), such that
A(g,) is with m rows and A(g,) with n — m rows. In other words, no m by m
submatrix of A(G) can be found, for m << n — 1, such that the modulo 2 sum
of those m rows is equal to zero.

Since there are only two constants O and 1 in this field, the additions of all
vectors taken m at atimeform = 1,2, ..., n — 1 exhausts all possible linear
combinations of n — 1 row vectors. Thus we have just shown that no linear
combination of m row vectors of A (for m << n — 1) can be equal to zero.
Therefore, the rank of A(G) must be at least n — 1.

Since the rank of A(G) is no more than n — | and is no less thann — 1, it
must be exactly equal to » — 1. Hence Theorem 7-2.

THEOREM 7-2

If A(G) is an incidence matrix of a connected graph G with n vertices, the rank
of A(G)isn — 1.

The argument leading to Theorem 7-2 can be extended to prove that the
rank of A(G) is n — k, if G is a disconnected graph with » vertices and k com-
ponents (Problem 7-3). This is the reason why the number » — k has been
called the rank of a graph with kK components.

If we remove any one row from the incidence matrix of a connected
graph, the remaining (n — 1) by e submatrix is of rank n — 1 (Theorem 7-2).
In other words, the remaining n — 1 row vectors are linearly independent.
Thus we need only » — 1 rows of an incidence matrix to specify the corre-
sponding graph completely, for n — | rows contain the same amount of
information as the entire matrix. (This is obvious, since given n — 1 rows we
can easily reconstitute the missing row, because each column in the matrix
has exactly two 1’s.)
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Such an (n — 1) by e submatrix A, of A is called a reduced incidence
matrix. The vertex corresponding to the deleted row in A, is called the ref-
erence vertex. Clearly, any vertex of a connected graph can be made the
reference vertex.

Since a tree is a connected graph with n vertices and n — 1 edges, its
reduced incidence matrix is a square matrix of order and rank n» — 1. In other
words,

COROLLARY

The reduced incidence matrix of a tree is nonsingular.

A graph with n vertices and n — 1 edges that is not a tree is disconnected.
The rank of the incidence matrix of such a graph will be less than n — 1.
Therefore, the (n — 1) by (n — 1) reduced incidence matrix of such a graph
will not be nonsingular. In other words, the reduced incidence matrix of a
graph is nonsingular if and only if the graph is a tree.

7-2. SUBMATRICES OF A(G)

Let g be a subgraph of a graph G, and let A(g) and A(G) be the incidence
matrices of g and G, respectively. Clearly, A(g) is a submatrix of A(G) (pos-
sibly with rows or columns permuted). In fact, there is a one-to-one corre-
spondence between each n by k submatrix of A(G) and a subgraph of G with
k edges, k being any positive integer less than e and »n being the number of
vertices in G.

Submatrices of A(G) corresponding to special types of subgraphs, such
as circuits, spanning trees, or cut-sets in G, will undoubtedly exhibit special
properties. Theorem 7-3 gives one such property.

THEOREM 7-3

Let A(G) be an incidence matrix of a connected graph G with n vertices. An
(n — 1) by (n — 1) submatrix of A(G) is nonsingular if and only if the n — 1
edges corresponding to the » — 1 columns of this matrix constitute a spanning tree
in G.

Proof: Every square submatrix of order » — 1 in A(G) is the reduced incidence
matrix of the same subgraph in G with » — 1 edges, and vice versa. From the
remarks following Theorem 7-2, it is clear that a square submatrix of A(G) is
nonsingular if and only if the corresponding subgraph is a tree. The tree in this
case IS a spanning tree, because it contains n — 1 edges of the n-vertex graph.
Thus the theorem. |}



142 MATRIX REPRESENTATION OF GRAPHS CHAP. 7

7-3. CIRCUIT MATRIX

Let the number of different circuits in a graph G be g and the number of
edges in G be e. Then a circuit matrix B = [b;;] of G is a g by e, (0, 1)-matrix
defined as follows:

b, =1, if ith circuit includes jth edge, and

=0, otherwise.

To emphasize the fact that B is a circuit matrix of graph G, the circuit matrix
may also be written as B(G).

The graph in Fig. 7-1(a) has four different circuits, {a, b}, {c, e, g}, {d, f,
g}, and {c, d, f, e}. Therefore, its circuit matrix is a 4 by 8, (0, I)-matrix as
shown:

B(G) = (7-3)

oS o o - ]

b c
1 0
0 1
0 0
0 1

—_—_— O O

e
0
1
0
1

—_—_ O O

g
0
1
1
0

o O O o =

1
2
3
4

The following observations can be made about a circuit matrix B(G) of
a graph G:

1. A column of all zeros corresponds to a noncircuit edge (i.e., an edge
that does not belong to any circuit).
2. Each row of B(G) is a circuit vector.

3. Unlike the incidence matrix, a circuit matrix is capable of representing
a self-loop—the corresponding row will have a single 1.

4. The number of 1's in a row is equal to the number of edges in the
corresponding circuit.

5. If graph G is separable (or disconnected) and consists of two blocks
(or components) g, and g,, the circuit matrix B(G) can be written in
a block-diagonal form as

where B(g,) and B(g,) are the circuit matrices of g, and g,. This ob-
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servation results from the fact that circuits in g, have no edges belong-
ing to g,, and vice versa (Problem 4-14).

6. Permutation of any two rows or columns in a circuit matrix simply
corresponds to relabeling the circuits and edges.

7. Two graphs G, and G, will have the same circuit matrix if and only if
G, and G, are 2-isomorphic (Theorem 4-15). In other words, (unlike
an incidence matrix) the circuit matrix does not specify a graph com-
pletely. It only specifies the graph within 2-isomorphism. For instance,
it can be easily verified that the two graphs in Figs. 4-11(a) and (d)
have the same circuit matrix, yet the graphs are not isomorphic.

An important theorem relating the incidence matrix and the circuit matrix
of a self-loop-free graph G is

THEOREM 7-4

Let B and A be, respectively, the circuit matrix and the incidence matrix (of a
self-loop-free graph) whose columns are arranged using the same order of edges.
Then every row of B is orthogonal to every row A; that is,

A-BT =B-AT =0 (mod 2), (7-4)
where superscript 7 denotes the transposed matrix.

Proof: Consider a vertex v and a circuit I' in the graph G. Either visin I” or
it is not. If v is not in I, there is no edge in the circuit I" that is incident on ». On
the other hand, if » is in I, the number of those edges in the circuit I' that are
incident on v is exactly two.

With this remark in mind, consider the ith row in A and the jth row in B.
Since the edges are arranged in the same order, the nonzero entries in the corre-
sponding positions occur only if the particular edge is incident on the ith vertex
and is also in the jth circuit.

If the ith vertex is not in the jth circuit, there is no such nonzero entry, and
the dot product of the two rows is zero. If the ith vertex is in the jth circuit, there
will be exactly two 1’s in the sum of the products of individual entries. Since
1 4+ 1 = 0 (mod 2), the dot product of the two arbitrary rows—one from A and
the other from B—is zero. Hence the theorem. |}

As an example, let us multiply the incidence matrix and transposed circuit
of the graph in Fig. 7-1(a), after making sure that the edges are in the same
order in both.
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1 0 0 O]
0 0 01 01 0 O] |1 O OO
0 000 1 1 11 0 1 0 1
A.BTZOOOOOOOI 0 0 1 1
1 1.1 01 0 0 O 01 0 1
0011 0010 0 0 1 1
1 1.0 0 0 0 O0 O] |O 1 1 O
0 0 0 0
[0 0 0 O]
0 0 00O
:0000 (mod 2).
0 0 0O
0 0 0O
10 0 0 0

7-4. FUNDAMENTAL CIRCUIT MATRIX
AND RANK OF B

A set of fundamental circuits (or basic circuits) with respect to any span-
ning tree in a connected graph, as discussed in Chapters 3 and 6, are the only
independent circuits in a graph. The rest of the circuits can be obtained as
ring sums (1.€., linear combinations) of these circuits. Thus, in a circuit matrix,
if we retain only those rows that correspond to a set of fundamental circuits
and remove all other rows, we would not lose any information. The remaining
rows can be reconstituted from the rcws corresponding to the set of fun-
damental circuits. For example, in the circuit matrix in Eq. (7-3), the fourth
row is simply the mod 2 sum of the second and third rows.

A submatrix (of a circuit matrix) in which all rows correspond to a set of
fundamental circuits is called a fundamental circuit matrix B,. A graph and
its fundamental circuit matrix with respect to a spanning tree (indicated by
heavy lines) are shown in Fig. 7-2.

As in matrices A and B, permutations of rows (and/or of columns) do not
affect B,. If n is the number of vertices and e the number of edges in a connect-
ed graph, then B, is an (e — n + 1) by e matrix, because the number of
fundamental circuits is e — n 4 1, each fundamental circuit being produced
by one chord.

Let us arrange the columns in B, such that all the e — n -+ | chords
correspond to the first ¢ — n + 1 columns. Furthermore, let us rearrange
the rows such that the first row corresponds to the fundamental circuit made
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€4
€
6’5 (.)7
e €
(a)
ez (’3 66 el €4 85 6’7
|
I 0 0 i 1 1 0 1
|
0 | 0, O 1 0 I
|
|
0 0 11 o0 0 | 1

(b)

Fig. 7-2 Graph and its fundamental circuit matrix (with respect
to the spanning tree shown in heavy lines).
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by the chord in the first column, the second row to the fundamental circuit
made by the second, and so on. This indeed is how the fundamental circuit

matrix is arranged in Fig. 7-2(b).
A matrix B, thus arranged can be written as

B, = [l.IB],

(7-3)

where |, is an identity matrix of order 4 = ¢ — n + 1, and B, is the remain-
ing u by (n — 1) submatrix, corresponding to the branches of the spanning

tree.
From Eq. (7-5) it is clear that the

rank of B, =y =e —n+ 1.
Since B, is a submatrix of the circuit matrix B, the
rank of B >e¢ — n 4 1.
In fact, we can prove Theorem 7-5.

THEOREM 7-5

If B is a circuit matrix of a connected graph G with e edges and » vertices,

rank of B =¢ — n + 1.
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Proof: If A is an incidence matrix of G, from Eq. (7-4) we have
A-BT = 0 (mod 2).
Therefore, according to Sylvester’s theorem (Appendix B),

rank of A -+ rank of B < ¢;

that is,

rank of B << ¢ — rank of A.
Since rank of A =n — 1
we have rank of B<<e — n 4- 1.
But rank of B >e — n 4 1.

Therefore, we must have
rankof B =¢ —n-+1. B

An Alternative Proof: Theorem 7-5 can also be proved by considering the
circuit subspace W in the vector space W of a graph, as discussed in Chapter 6.

Every row in circuit matrix B is a vector in Wr, and since the rank of any
matrix is equal to the number of linearly independent rows (or columns) in the
matrix, we have.

rank of matrix B = number of linearly independent rows in B;

but the number of linearly independent rows in B < number of linearly independent
vectors in W, and the number of linearly independent vectors in W = dimension
of Wr = u. Therefore, rank of B << e — n -+ 1. Since we already showed that
rank of B> ¢ — n + 1, Theorem 7-5 follows. |

Note that in talking of spanning trees of a graph G it is necessary to as-
sume that G is connected. In the case of a disconnected graph, we would have
to consider a spanning forest and fundamental circuits with respect to this
forest. It is not difficult to show (considering component by component) that
if G is a disconnected graph with kK components, e edges, and n vertices,

rank of B =y =e¢ —n + k.

7-5. APPLICATION TO A SWITCHING NETWORK

Suppose you are given a box that contains a switching network consisting
of eight switches a, b, ¢, d, ¢, f, g, and h. The switches can be turned on or off
from outside. You are asked to determine how the switches are connected
inside the box, without opening the box, of course.

One way to find the answer is to connect a lamp at the available terminals
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a b ¢ Switch &
ONONO, o— 0

d e f ‘__—@Lamp
®© ® @

g h

® @ o {11+

Battery
The box

Fig. 7-3 Black box with a switching network.

in series with a battery and an additional switch k, as shown in Fig. 7-3. And
then find out which of the various combinations light up the lamp.

In this experiment, suppose you discover that the combinations that turn
on the lamp are eight:

(a, b, f, h, k), (a,b,g k), (a,e, f, g k), (a,e,h,k),
(b,c,e, h k), (c,f, h k), (c,g k), (d k).

Solution: Consider the switching network as a graph whose edges repre-
sent switches. We can assume that the graph is connected, and has no self-
loop. Since a lit lamp implies the formation of a circuit, we can regard the
preceding list as a partial list of circuits in the corresponding graph. With
this list we form a circuit matrix:

a b ¢c d e f g h k

If1 1.0 0 01 0 1 1]
2{1 1 0 0 0 01 01
3110 001 1 1 0 1

8:4 1 0 001 00 1 1 .
sS{10o 1 1.0 1 0 O 1 1
6/0 01 0 01 0 1 1
710 01 0 0 01 0O 1
810 0 01 0 0 0 O 1

Next, to simplify the matrix, we should remove the obviously redundant
circuits. Observe that the following ring sums of circuits give rise to other
circuits:

(a,b,8 k) D (¢, [, h, k) D (¢, 8 k) = (a, b, 1, h, k),
(a,b,8 k) D (a, e, h, k) D (c,g. k) = (b, c, e, h, k),
(@, e, h, k) ® (¢, /. h, k) D (¢, g, k) = (a, e, [, g, k).
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Therefore, we can delete the first, third, and fifth rows from matrix B, without
any loss of information. Remaining is a 5 by 9 matrix B, :

a b ¢ d e f g h k
1 1 0 0 0 0 1 O 17
1 0 001 0 0 1 1
B,={0 01001 01 1}
0O 01 00 0 1 01
0 001 00 O O 1]

Our next goal is to bring matrix B, to the form of Eq. (7-5). For this we
interchange columns to get B, :

b e f g d a ¢ h k
1 0 01 01 0 O 17
01 00 01011
B,=|0 01 0 0 01 1 1
0 001 001 01
0 0001 0 0 0 1]

Adding the fourth row in B, to the first, we get B,.

b e f g dia ¢ h k
1000 0/1 1 0 0]

01 000:1 0 11
B,=/0 0 1 0 0:0 1 1 1|=I[}IF.
0001 0:01 0 I
00001000 1]

We note that there are no redundant circuits in matrix B,, and B, is a
fundamental circuit matrix of the required graph. Since the rank of B; is
five, and the network was assumed to be connected, we have the following
information about the graph:

number of edges e = 9,
nullity g = 5,
rank r = 4,

number of vertices n = 5.
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Constructing a graph from its incidence matrix is simple, but constructing
a graph from its fundamental circuit matrix is difficult. We shall, therefore,
construct an incidence matrix from B,.

Since the rows in the incidence matrix are orthogonal to those in B,—
according to Eq. (7-4)—we must first look for a 4 by 9 matrix M, whose rows
are linearly independent and are orthogonal to those of B,.

Since,
B3:[ISEF],
an orthogonal matrix to B, is
M = [—FT{1,]
= [FTi1,],
because in mod 2 arithmetic —1 = 1, [i.e., in GF(2) the additive inverse of
11s 1].
Thus
b e f g dia c h k
11 0 0 0:1 0 O O]
1 01 1 0:01 00
M = ! -
011000010
01 11 1:00 0 1]

Clearly, the rank of M is four, and it is easy to check that
B;-M" = 0.
Before M can be regarded as a reduced incidence matrix, it must have at

most two I’s in each column. This can be achieved by adding (mod 2) the
third row to the fourth in M, which gives us M’.

b e f g d a ¢ h k
M 1 0 0 01 0 0 O]
M’ — 1 011 0 01 00 .
015 1 0 0O0O0T1O0
000 1 1T 00 1 1]

Matrix M’ is the reduced incidence matrix. The incidence matrix A can
be obtained by adding a fifth row to M’ such that there are exactly two 1’s
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in every column; that is,

b e f g d a ¢ h k
11 0 0 01 0 0 0]
1 01 1001 00
A=|0 1100001 0l
00011001 1
00001 11 0 1]

CHAP. 7

From the incidence matrix A we can readily construct the graph and hence

the corresponding switching network, as shown in Fig. 7-4.

Inside Black Box

e RN External switch
// a \\
/ O/O < /o
/ \
/ M \
/ (. \ (3 Lamp
/ \
| <'\ \ d |
| Q Q /
\ /
\ / g /
\ C\ //
AN o/h'o 1|+
N s
\\\ 7 Battery
~ ~

(b)

Fig. 7-4 Graph and the corresponding switching network.
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7-6. CUT-SET MATRIX

Analogous to a circuit matrix, we can define a cut-set matrix C = [¢;;] in
which the rows correspond to the cut-sets and the columns to the edges of the
graph, as follows:

c; =1, if ith cut-set contains jth edge, and

= 0, otherwise.

For example, a graph and its cut-set matrix are shown in Fig. 7-5.
The following remarks may be made about a cut-set matrix C(G) of a
graph G.

1. As in the case of the incidence matrix, a permutation of rows or
columns in a cut-set matrix corresponds simply to a renaming of the
cut-sets and edges, respectively.

2. Each row in C(G) is a cut-set vector.
3. A column with all 0’s corresponds to an edge forming a self-loop.

4. Parallel edges produce identical columns in the cut-set matrix (e.g.,
first two columns in Fig. 7-5).

5. In a nonseparable graph, every set of edges incident on a vertex is a
cut-set (Problem 4-8). Therefore, every row of incidence matrix A(G)
1s included as a row in the cut-set matrix C(G). In other words, for a
nonseparable graph G, C(G) contains A(G). For a separable graph, the
incidence matrix of each block is contained in the cut-set matrix. For
example, the incidence matrix of the block {c, d, e, f, g} in Fig. 7-5 is
the 4 by 5 submatrix of C left after deleting rows a, b, and /4 and col-
umns 1, 2, 5, and 8.

6. In view of observation 5,
rank of C(G) > rank of A(G).
Hence, for a connected graph of n vertices,
rank of C(G) > n — 1. (7-6)
7. Since the number of edges common to a cut-set and a circuit is always
even, every row in C is orthogonal to every row in B, provided the

edges in both B and C are arranged in the same order. In other words,

B-CT=C.B"=0 (mod 2). (7-7)
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a b c d e f g h

1 [o 0 0 0 0 0 0 1]
2 | 1 0 0 0 0 0 0
3 |o 0 I 0 1 0 0 0
4 | o 0 0 0 1 1 1 0

C:

5 1o 0 l 0 0 I 1 0
6 | o 0 0 1 0 | 0 0
7 |o 0 1 1 0 0 1 0
8 |0 0 0 1 1 0 1 0

L -

Fig. 7-5 Graph and its cut-set matrix.
On applying Sylvester’s theorem to Eq. (7-7),
rank of B + rank of C < e,
and since for a connected graph

rank of B=e¢ — n + 1,
rank of C < n — 1. (7-8)
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Combining Eqgs. (7-6) and (7-8),
rank of C =n — 1.
Thus we have the following important theorem for a connected graph G.

THEOREM 7-6

The rank of cut-set matrix C(G) is equal to the rank of the incidence matrix
A(G), which equals the rank of graph G.

As in the case of the circuit matrix, the cut-set matrix generally has many
redundant (or linearly dependent) rows. Therefore, it is convenient to define
a fundamental cut-set matrix, C,, as follows:

A fundamental cut-set matrix C, (of a connected graph G with e edges
and n vertices) is an (n — 1) by e submatrix of C such that the rows corre-
spond to the set of fundamental cut-sets with respect to some spanning tree.

As in the case of a fundamental circuit matrix, a fundamental cut-set
matrix C, can also be partitioned into two submatrices, one of which is an
identity matrix |, _, of order » — 1. That is,

Cr=I[Ccil-i]s (7-9)

where the last » — 1 columns forming the identity matrix correspond to the
n — 1 branches of the spanning tree, and the first e — n + 1 columns form-
ing C_ correspond to the chords.

A connected graph and a fundamental cut-set matrix with respect to a
spanning tree (shown in heavy lines) are given in Fig. 7-6.

Again note that in talking of cut-set matrices we have confined ourselves
to connected graphs only. This treatment can be generalized to include dis-
connected graphs by considering one component at a time.

7-7. RELATIONSHIPS AMONG Af, B;, AND C,

In this section we shall explore the relationships among the reduced in-
cidence matrix A, the fundamental circuit matrix B, and the fundamental
cut-set matrix C, of a connected graph.

It has been shown that

B, =[l.{B], (7-5)
C, =[C.il.-1], (7-9)

where subscript ¢ denotes the submatrix corresponding to the branches of a
spanning tree, and subscript ¢ denotes the submatrix corresponding to the
chords.

Let the spanning tree T in Eqs. (7-5) and (7-9) be the same, and let the
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b
b ¢ d : a e f g h
- | .
| 0 0 : 1 0 0 0 0
|
0 1 0 : 0 ] 0 0 0
|
C,=10 0 1 0 0 | 0 0 = [C,: I5]
|
0 1 1 } 0 0 0 1 0
|
K 0 0 l 0 0 0 0 I

Fig. 7-6 Spanning tree in a graph and the corresponding funda-
mental cut-set matrix.

order of the edges in both equations be the same. Furthermore, in the reduced
incidence matrix A,—of size (n — 1) by e—Ilet the edges (i.e., the columns)
be arranged in the same order as in B, and C,. Partition A, into two sub-
matrices:

A, =[A,1A] (7-10)

where A, consists of the n — 1 columns corresponding to the branches of the
spanning tree 7, and A, is the remaining submatrix corresponding to the
e — n + 1 chords.

Since the columns in A, and B, are arranged in the same order, from Eq.
(7-4) we have (in mod 2 arithmetic)

A,-BT = 0.
That is, A, | A,]-[-éur_] — o,

and A, 4 A -BT = 0. (7-11)



SEC. 7-7 RELATIONSHIPS AMONG A/, B, AND C 155

Since A, is nonsingular, its inverse A;"! exists. Premultiplying both sides
of Eq. (7-11) by A; !, we get

At-A, = —BT. (7-12)
Since in mod 2 arithmetic —1 = 1,
B = A !-A.. (7-13)

Similarly, since the columns in B, and C, are arranged in the same order,
according to Eq. (7-4), we have (in mod 2 arithmetic)

C,+BL = 0.

That is, [C.! |”_1]-[_éar_] — 0,
C. — —Br (7-14)
BT (7-15)

= A 1A, from (7-13).

For example, let us look at the following three matrices for the graph used
in Figs. 7-1, 7-5, and 7-6. Using {a, e, f, g, h} as the spanning tree, and drop-
ping the sixth row from matrix A in Fig. 7-1 to get A,, we have

b ¢ dia e f g h

(001!’00100‘

0000 1 1 1 1
A,=[0 0 00 0 0 0 1|=[A]A]

11 0{1 1000

01 11000 1 0]

b ¢ d'a e f g h

1 001 0000
B,=[0 1 0{0 1 0 1 0|=[}B],

00 1{0 01 10

b ¢c dia e f g h

1 0 01 0 0 0 0]

01 0/01 00 0
C,=[{0 0 110 0 1 0 0=[C,lI]L.
01 100010
(00 0:0 0 0 0 1]
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BT = C, is immediate. It can also be readily verified that
At-A, = Bl
This leads to three conclusions:

1. Given A or A,, we can readily construct B, and C,, starting from an
arbitrary spanning tree and its subgraph A, in A,.

2. Given either B, or C,, we can construct the other. Thus since B, de-
termines a graph within 2-isomorphism, so does C,.

3. Given either B, or C,, A, in general cannot be determined completely.

7-8. PATH MATRIX

Another (0, 1)-matrix often convenient to use in communication and
transportation networks is the path matrix. A path matrix is defined for a
specific pair of vertices in a graph, say (x, y), and is written as P(x, y). The
rows in P(x, y) correspond to different paths between vertices x and y, and
the columns correspond to the edges in G. That is, the path matrix for (x, y)
vertices is P(x, y) = [p;;], where

pi; =1, if jth edge lies in ith path, and
=0, otherwise.
As an illustration, consider all paths between vertices v, and v, in Fig. 7-1(a).

There are three different paths; {A, e}, {A, g, ¢}, and {4, f, d, c}. Let us number
them 1, 2, and 3, respectively. Then we get the 3 by 8 path matrix P(v,, v,):

a b ¢c d e f g h

10 0 001 0 0 1

P(v,,v,) =20 0 1 0 O O I 1
31001 1 0 1 0 1

Some of the observations one can make at once about a path matrix
P(x, y) of a graph G are

1. A column of all 0’s corresponds to an edge that does not lie in any
path between x and y.

2. A column of all I's corresponds to an edge that lies in every path
between x and y.

3. There is no row with all 0’s.

4. The ring sum of any two rows in P(x, y) corresponds to a circuit or an
edge-disjoint union of circuits.
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THEOREM 7-7

If the edges of a connected graph are arranged in the same order for the columns
of the incidence matrix A and the path matrix P(x, y), then the product (mod 2)

A. PT(Xa y) = M,

where the matrix M has 1’s in two rows x and y, and the rest of the n — 2 rows
are all 0’s.

Proof: The proof is left as an exercise for the reader (Problem 7-14).

As an example, multiply the incidence matrix in Fig. 7-1 to the transposed
P(v;, v,), just discussed.

pa—

0 0 0
0 00101 00][000
0000 1 1 1 1|01 1
APT(oy |0 0 00000 11100 I
1 1101000 |1 00
0011001 0||0o0°1
11 000000] |01 0
111
1 2 3
v, [0 0 0]
v, |0 0 O
_ul b b hed 2),
v |1 11
v, [0 0 0
v |0 0 0]

Other properties of the path 